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We offer a model that can capture three types of
reasoning.1 The first, which is the most common in
economic modeling, is Bayesian. The agent formulates
the set of possible states of the world and a prior prob-
ability distribution over this state space. The agent’s
predictions are a relatively straightforward matter of
applying Bayes’ rule, as new observations allow her
to rule out some states and condition her probability
distribution on the surviving states.

An alternative mode of reasoning is case-based. The
agent considers past observations and predicts the
outcome that appeared more often in those past cases
that are considered similar. If all past observations are
considered equally similar, the case-based prediction
is simply the mode, that is, the outcome that is most
frequent in the database. If the agent uses a similarity
function that puts all its weight on the most recent
outcome, her prediction will simply be that outcome.

Finally, rule-based reasoning calls for the agent to
base her predictions on regularities that she believes
characterize the phenomenon in question.

The boundaries between the three modes of reasoning
are not always sharp. Our focus is on the Bayesian
approach. By “Bayesian reasoning” we refer to the
common approach in economic theory, according to
which all reasoning is Bayesian. Any source of uncer-
tainty is modeled in the state space, and all reasoning
about uncertainty takes the form of updating a prior
probability via Bayes’ rule.

We present a framework that unifies these three modes
of reasoning (and potentially others), allowing us to
view them as special cases of a general learning pro-
cess. The agent attaches weights to conjectures. Each
conjecture is a set of states of the world, capturing
a way of thinking about how outcomes in the world
will develop. The associated weights capture the rela-

1The talk is based on joint work with (i) Larry Samuelson
and David Schmeidler (2013); (ii) Gabrielle Gayer (2014); (iii)
Alfredo Di Tillio and Larry Samuelson (2013).

tive influence that the agent attaches to the various
conjectures. The weighted sum of these conjectures is
a Belief Function as in Dempster (1967) and Shafer
(1976).

Given a sequence of observations, the agents rules out
the conjectures that have been refuted by them, and
continues with the weighted sum of the remaining ones.
This turns out to be equivalent to Dempster-Shafer
rule of combination, or updating of a belief function.

To generate a prediction, the agent sums the weight of
all nontrivial conjectures consistent with each possible
outcome, and then ranks outcomes according to their
associated total weights. In the special case where each
conjecture consists of a single state of the world, our
framework is the standard Bayesian model, and the
learning algorithm is equivalent to Bayesian updating.
Employing other conjectures, which include more than
a single state each, we can capture other modes of
reasoning, as illustrated by simple examples of case-
based and of rule-based reasoning.

Our model could be used to address either positive or
normative questions. We focus on positive ones, de-
scribing how the reasoning process of an agent evolves
as observations are gathered. Within the class of such
questions, our model could be used to capture a variety
of psychological biases and errors, but the focus of this
paper is on the reasoning of an agent who makes no ob-
vious errors in her reasoning. Such an agent may well
be surprised by circumstances that she has deemed
unlikely, that is, by “black swans,” but will never be
surprised by a careful analysis of her own reasoning.
The optimality of this reasoning process is a normative
question, which we do not address here.

Our main results concern the dynamics of the weight
put on Bayesian vs. non-Bayesian reasoning. We sug-
gest conditions under which Bayesian reasoning will
give way to other modes of reasoning, and alternative
conditions under which the opposite conclusion holds.
Importantly, if the agent does not know the type of
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process she is facing, and attempts to be open-minded
about it, Bayesian reasoning will disappear in the limit.
The very simple reason is that there are many Bayesian
conjectures, whereas other families of conjectures may
be small. Specifically, the weight put on the Bayesian
conjectures (as a whole) has to be divided among expo-
nentially many disjoint subset, whereas the case-based
ones (as well as some families of rule-based ones) are
only polynomially large.

In a similar vein, we can also ask how the rela-
tive weight of rule-based and case-based conjectures
changes with evidence. If a “rule” has to provide a
prediction at each and every node, and be computable,
we find that (i) if reality is simple enough (say, com-
putable), then rule-based reasoning takes over; (ii) if
reality isn’t simple enough, then case-based reasoning
is likely to be dominant.

Finally, the model can also be used to reason about
counterfactuals.
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