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Abstract
This paper develops a combinatorial description of the ex-
treme points of the core of a necessity measure on a finite
space. We use the ingredients of Dempster-Shafer theory
to characterize a necessity measure and the extreme points
of its core in terms of the Möbius inverse, as well as an in-
terpretation of the elements of the core as obtained through
a transfer of probability mass from non-elementary events
to singletons. With this understanding we derive an exact
formula for the number of extreme points of the core of a
necessity measure and obtain a constructive combinatorial
insight into how the extreme points are obtained in terms
of mass transfers. Our result sharpens the bounds for the
number of extreme points given in [15] or [14, 13]. Fur-
thermore, we determine the number of edges of the core of
a necessity measure and additionally show how our results
could be used to enumerate the extreme points of the core
of arbitrary belief functions in a not too inefficient way.

Keywords. necessity measure, core, extreme point, enu-
meration, belief function, Möbius inverse, mass transfer,
possibility measure, credal set, focal set.

1 Introduction

Let Ω = {ω1, . . . ,ωn} be a finite space and let N : 2Ω −→
[0,1] be a necessity measure.1 The core M (N) of a neces-
sity measure N is defined as the set of probability measures
dominating N:

M (N) := {P ∈Pn|∀A ∈ 2Ω : P(A)≥ N(A)},

where Pn denotes the set of all probability measures2 on
Ω. If one identifies a probability measure P with its charac-
terizing vector (P({ω1}), . . . ,P({ωn})) then the core of N
is a convex polytope3 with finite many extreme points.

1A necessity measure N : 2Ω −→ [0,1] is a map satisfying N( /0) =
0,N(Ω) = 1 and N(A∩B) = min{N(A),N(B)} for all A,B ∈ 2Ω. For a
general introduction to necessity measures, see, e.g., [6].

2Since Ω is finite here, it does not make a difference if we take finitely
additive or σ -additive probabilities.

3For basics of polytopes, see, e.g., [12].

The aim of this paper is to give a formula for the number as
well as a constructive description of these extreme points.
Since we will derive an exact formula for the number of
extreme points in this paper, we are in fact able to improve
the bounds for the number of extreme points given in [14,
13] that are not tight.

Studying the geometry of the core and describing the ex-
treme points of the core is interesting for its own, not only
in the context of necessity measures. Furthermore, for
different applications of imprecise probability theory it is
helpful to efficiently describe and compute the extreme
points of the core to make different computational tasks
tractable.

For example in decision making under partial prior infor-
mation, for one approach for computing optimal decisions
given in [19, Section 4], one needs to compute all extreme
points of the underlying imprecise probability model. Also
for statistical hypothesis testing under imprecise probabilis-
tic models one can use the extreme points of the cores of
the underlying models for the construction of Niveau-α-
Maximin-Tests tests, cf., [1, Section 4,5].

In the field of game theory, where more general set func-
tions (games) are treated, the core is an object of interest as
well, cf., e.g. [10, 18, 3]. There, for example in the context
of convex games the so-called Shapley value appears as
the center of gravity of the extreme points of the core (cf.,
[18]).

The idea of studying complex set functions (here, neces-
sity measures, or more generally, belief functions) via a
characterizing set of more easy to handle set functions
(here, classical probability measures) is also present in the
context of qualitative capacities (cf., e.g., [11]), where the
so-called possibilistic core consisting of all (qualitative)
possibility measures dominating a given qualitative capac-
ity was introduced in [7]. There, results similar to Theorem
2 of our paper and an enumerating procedure for the “ex-
treme points” of this possibilistic core (which are defined
differently in an order theoretic manner) are given.

To describe the core of necessity measures we use
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Dempster-Shafer theory4 and treat necessity measures
as special kinds of belief functions. A belief function
Bel : 2Ω −→ [0,1] is a function that is induced by a so-
called basic probability assignment m : 2Ω −→ [0,1] via

∀A ∈ 2Ω : Bel(A) = ∑
B⊆A

m(A).

The basic probability assignment m generating Bel can
be interpreted as a generalization of a probability mea-
sure that assigns probability mass not only to elementary
events but also to any arbitrary event in 2Ω\{ /0}. Since m
is thought of as a probability measure, it is assumed that
∑A∈2Ω m(A) = 1 and furthermore m( /0) = 0. Events A⊆Ω
with m(A)> 0 are called focal sets and the set of all focal
sets of a belief function Bel is denoted with F (Bel). The
motivation for introducing the basic probability assignment
is the modeling of some kind of uncertainty that cannot
be associated with exactly one state ω ∈Ω, but only with
a non-elementary event A ⊆ Ω. The belief function Bel
induced by the basic probability assignment is then of in-
terest if one wants to know for some set A, which portion
of the whole probability mass can overall be associated to
the states of A. For a given belief function Bel the basic
probability assignment m generating Bel can be recovered
from Bel by applying the so-called Möbius inversion, thus
m is also called the Möbius inverse of Bel.

Now, a necessity measure N (on a finite space) can be char-
acterized5 as a special belief function6 where all focal sets
are nested, i.e.: ∀A,B ∈F (N) : A⊆ B or B⊆ A. The core
of a belief function can be understood as the set of all prob-
ability measures that are consistent with the belief function
in the sense that every P ∈M (Bel) can be obtained via
a “transfer” of probability mass of the basic probability
assignment m from non-elementary events A ⊆ Ω to sin-
gletons {ω} ⊆ A. To make this more precise, we state the
following definition and theorem:

Definition 1 Let Bel be a belief function with correspond-
ing basic probability assignment m. A selection λ :
F (Bel) −→Pn : A 7→ λA is a mapping that assigns to
every focal set A a probability measure λA whose support
is in A. The set of all selections associated to a belief
function on a space 2Ω with |Ω| = n is denoted with Λn.
A selection λ could be understood as specifying for every
focal set A and for every state ω ∈ A, how much of mass
assigned to A should be transferred from A to ω . More
precisely, for a belief function Bel and a selection λ there
is an induced probability measure Pλ via

Pλ ({ωi}) = ∑
A∈F (Bel)

m(A) ·λA({ωi}).

4For an introduction, see, e.g., [17].
5For a proof, see, e.g., [17, p.220].
6Note that the interpretation of a necessity measure is not necessar-

ily identical to that of a belief function, in this paper we analyze only
purely mathematical properties of necessity measures in the framework of
Dempster-Shafer theory.

Theorem 1 For a belief function Bel we have

M (Bel) = {Pλ | λ ∈ Λn}.

The proof can be found in [4, Corollary 3, p.273] or, in
the context of game theory, in [5, Theorem 2]. In the
context of game theory, the set {Pλ | λ ∈ Λn} is called
selectope and the set M (ν), where ν is a game, is called
core and both sets coincide iff the Möbius inverse of the
game ν is non-negative, as is also shown in [5, Theorem
2]. Since selections are simply mappings, we can introduce
convex combinations. For selections λ ,λ ′ ∈ Λn and c ∈
[0,1] define

c ·λ +(1− c) ·λ ′ : F (Bel)−→Pn :
A 7→ c ·λA +(1− c) ·λ ′A.

Note that the probability measure associated to a convex
combination of two selections equals the convex combi-
nation of the probability measures associated to the two
selections: For λ ,λ ′ ∈ Λn and c ∈ [0,1] we have

Pcλ+(1−c)λ ′ = cPλ +(1− c)Pλ ′ .

This suggests that it is possible to characterize the extreme
points of M (Bel) in terms of the corresponding selections
in Λn.

Lemma 1 For an extreme point P = Pλ ∈M (Bel) we
have: ∀A ∈F (Bel) : ∃!ω ∈ A : λA({ω}) = 1.

Proof: Let A ∈F (Bel). If for all ω ∈ A : λA({ω}) 6= 1 then
there would exist ωi,ω j ∈ A with λA({ωi})> 0 and λA({ω j})>
0. Now set ε := min{λA({ωi}),λA({ω j})} > 0 and define the
selections µ and ν via

µB({ω}) =





λB({ω}) if B 6= A
λA({ω}) if B = A,ω /∈ {ωi,ω j}
λA({ω})+ ε if B = A,ω = ωi

λA({ω})− ε if B = A,ω = ω j

;

νB({ω}) =





λB({ω}) if B 6= A
λA({ω}) if B = A,ω /∈ {ωi,ω j}
λA({ω})− ε if B = A,ω = ωi

λA({ω})+ ε if B = A,ω = ω j

.

Then Pλ = 1
2 Pµ + 1

2 Pν and Pµ 6= Pν because

Pµ({ωi})−Pν({ωi})
= ∑

B6=A
m(B) ·µB({ωi})+m(A) ·µA({ωi})

− ∑
B6=A

m(B) ·νB({ωi})−m(A) ·νA({ωi})

= 2ε ·m(A) 6= 0.
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This is a contradiction to the assumption that Pλ is an
extreme point of M (Bel), so there exists an ω with
λA({ω}) = 1. Because λA is a probability measure, there
could be only one ω with λA(ω) = 1.

Lemma 1 suggests the following definition:

Definition 2 Let Dn := {P∈Pn | ∃!ω ∈Ω : P({ω}) = 1}
and let Bel be a belief function. Let furthermore λ be a
selection and A ∈F (Bel). If λA ∈Dn we denote by ωλ (A)
the unique ω with λA({ω}) = 1.

Theorem 2 Let Bel be a belief function and let Pλ be an
extreme point of the core of Bel. For focal sets A,A′ ∈
F (Bel) with {ωλ (A),ωλ (A′)} ⊆ A∩A′ we have

ωλ (A) = ωλ (A
′).

Proof: Assume that ωλ (A) 6= ωλ (A
′). We now show that if this

would be the case then we could construct two different elements
Pµ and Pν of the core of Bel such that Pλ = cPµ +(1− c)Pν for
some appropriate chosen c ∈ [0,1] and thus Pλ could not be an
extreme point, so ωλ (A) = ωλ (A

′): Define the selections µ and
ν as

µB(ω) =





λB(ω) if B 6= A′

1 if B = A′,ω = ωλ (A)
0 else

νB(ω) =





λB(ω) if B 6= A
1 if B = A,ω = ωλ (A

′)
0 else

.

These selections lead in fact to two different probability measures
Pµ and Pν . Now, with c =

m(A)
m(A)+m(A′) we have P∗ := c ·Pµ +

(1− c) ·Pν = Pλ . To see this, look at the three different cases
ω = ωλ (A),ω = ωλ (A

′) and ω /∈ {ωλ (A),ωλ (A
′)}:

P∗({ωλ (A)}) = c ∑
B 6=A′ ,

ωλ (B)=ωλ (A)

m(B)+m(A′) + (1− c) ∑
B 6=A,

ωλ (B)=ωλ (A)

m(B)

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A)

m(B)+ c · (m(A)+m(A′))

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A)

m(B)+m(A)

= Pλ ({ωλ (A)}).

Here, the first sum in the first equation is valid because of Lemma
1 and because all mass m(A′) is assigned by µ to ωλ (A) and the
second sum does not contain m(A) and m(A′) because the mass
m(A) and m(A′) is assigned by ν to ωλ (A

′) 6= ωλ (A).

P∗({ωλ (A
′)}) = c ∑

B 6=A′ ,
ωλ (B)=ωλ (A′)

m(B) + (1− c) ∑
B 6=A,

ωλ (B)=ωλ (A′)

m(B)+m(A)

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A′)

m(B)+(1− c)(m(A′)+m(A))

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A′)

m(B)+m(A′)

= Pλ ({ωλ (A
′)}).

Analogously, here, the first sum in the first equation does not
contain m(A) and m(A′) because these masses are assigned by
µ to ωλ (A) 6= ωλ (A

′) and in the second sum the mass m(A) is
assigned by ν to ωλ (A

′). For ω /∈ {ωλ (A),ωλ (A
′)} we have

P∗({ω}) = c ∑
B 6=A′

ωλ (B)=ω

m(B)+(1− c) ∑
B 6=A

ωλ (B)=ω

m(B)

= ∑
B/∈{A,A′}

ωλ (B)=ω

m(B) = Pλ ({ω}).

Here, the masses m(A) and m(A′) essentially play no role, because
they are not assigned to ω by neither µ nor ν .

2 Description of the Core of a Necessity
Measure

Now we are prepared to describe the extreme points of
the core of a necessity measure. As already mentioned, a
necessity measure N is a belief function where the focal
sets are nested. This enables a concise description of the
extreme points of the core:

Theorem 3 Let N be a necessity measure with focal sets
F (N) = {A1 ⊂ A2 ⊂ . . . ⊂ Ak}. The number of extreme
points of the core M (N) is given by

|ext(M (N))|= |A1| ·
k

∏
i=2

(|Ai\Ai−1|+1) . (1)

Furthermore, the set of extreme points can be described as

ext(M (N)) = {Pλ | λ ∈ Λext
n }

with Λext
n = {λ ∈ Λn | ∀Al ∈ F (N) : λAl ∈

Dn & ωλ (Al) ∈ Al−1⇒ ωλ (Al) = ωλ (Al−1)}.

Proof: We firstly show that the number of extreme points is
lower or equal to |A1| ·∏k

i=2 (|Ai\Ai−1|+1). For this we only
have to observe that we could inductively look at the focal sets
of N starting from the smallest focal set A1. For a given extreme
point Pλ , the mass assigned to A1 can be assigned to any ω ∈
A1, for which one has |A1| possibilities. Then, for the second
focal set A2 one has |A2\A1| possibilities to assign the mass of
A2 outside of A1 and only one possibility to assign the mass
into A1 because in this case, the element ω ∈ A1, to which the
mass is assigned, is, because of Theorem 2, already determined
as ω = ωλ (A1), so for the assignment of the mass m(A2), we
have maximal |Ai\Ai−1|+ 1 possibilities and so on. This gives
maximal |A1| ·∏k

i=2 (|Ai\Ai−1|+1) possibilities for constructing
an extreme point.

Now we still have to show that the extreme points constructed
in the above manner are all actually extreme points and that they
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are all pairwise different. For this, we can analogously look at
ascending focal elements. To see that any Pλ with λ ∈ Λext

n is
in fact an extreme point we firstly assume that Pλ is the convex
combination of r extreme points Pµi with µi in Λext

n and show that
then necessarily Pλ = Pµ1 = . . .= Pµr which shows that Pλ is an
extreme point of M (N):

Since Pλ is such that λ ∈ Λext
n , all mass of A1 is assigned by

λ to exactly one ω ∈ A1 and no other mass m(B) is assigned
by λ to some other ω ∈ A1, so Pλ (A1\{ωλ (A1)}) = 0. This
implies that for all Pµi we also have Pµi(A1\{ωλ (A1)})= 0 and so
λ (A1)= µ1(A1)= . . .= µr(A1). Now, look at A2. If λ assigns the
mass of A2 somewhere into A1 (namely to ωλ (A1)), then no mass
at all is assigned by λ to some ω ∈ A2\A1 and thus necessarily
all µi also have to assign all the mass into A1 (namely to ωλ (A1)),
so, in this cases we have λ (A2) = µ1(A2) = . . . = µr(A2). If λ
assigns all mass of A2 somewhere into A2\A1, then every µi also
has to assign the mass of A2 outside A1 because if there was a Pµi

that assigns the mass of A2 into A1 then we would have Pµi(A1)>
Bel(A1) = Pλ (A1) because if λ assigns the mass of A2 not into
A1, then λ assigns also the mass of all further A3, . . . ,Ak not into
A1 and thus Pλ (A1) = Bel(A1). But if Pµi(A1) > Pλ (A1) then
because Pλ is assumed to be a convex combination of Pµ1 , . . . ,Pµr ,
there has to be a Pµ j with Pµ j < Pλ (A1) = Bel(A1). This is a
contradiction to the fact that Pµ j dominates Bel. So, in fact, in
this case all µ’s assign the mass of A2 outside of A1 and thus
exactly to ωλ (A2) because Pλ (A2\{ωλ (A2)}) = 0. The same
argumentation for all further A3, . . . ,Ak shows that altogether
λ (Al) = µ1(Al) = . . .= µr(Al) for l = 1, . . . ,k and so Pλ = Pµ1 =
. . .= Pµr .

To finally see that selections λ ,λ ′ with at least one focal set
Al with ωλ (Al) 6= ωλ ′(Al) lead to different Pλ and Pλ ′ look at
the smallest focal set Al with ωλ (Al) 6= ωλ ′(Al). If l = 1 then
Pλ ({ωλ (Al)})> 0 and Pλ ′({ωλ (Al)}) = 0 so Pλ and Pλ ′ are dif-
ferent. If l > 1 then we have ωλ (Al) /∈ Al−1 or ωλ ′A(l) /∈ Al−1
because if both ωλ (Al) and ωλ ′(Al) were in Al−1 then also
ωλ (Al−1) and ωλ ′(Al−1) would differ which would be a contra-
diction to the minimality of l. So assume without loss of generality
ωλ (Al) /∈ Al−1. Then Pλ ({ωλ (Al)})> 0 but Pλ ′({ωλ (Al)}) = 0
because λ ′ assigns all mass of focal sets A⊇ Al either outside of
Al or to ωλ ′(Al) and all other focal sets A⊆ Al−1 do not contain
ωλ (Al).

With Theorem 3 we have a precise constructive description
of the extreme points of the core of a necessity measure. It
turns out that it is possible to give furthermore a formula
for the number of edges of the core. For this purpose we
can use the fact that if two extreme points P and P′ are
connected through an edge of the core, then they differ
exactly at two states and thus the difference of P and P′

is of the form P−P′ = (0, . . . ,0,ε,0, . . . ,−ε,0 . . . ,0) for
some ε ∈R. This result is given in [20] that more generally
treats capacities of order 2.

Definition 3 Let Bel be a belief function with focal ele-
ments F (Bel) = {A1, . . . ,Ak} and let Pλ be an extreme
point of the core of Bel induced by a selection λ . The

characteristic χ of λ is defined7 as

χ : F (Bel)→Ω
.∪ {0} :

Ai 7→
{

0 if ∃ j < i : ωλ (A j) = ωλ (Ai)

ωλ (Ai) else
.

Lemma 2 Let N be a necessity measure with focal sets
F (N)= {A1⊂A2⊂ . . .⊂Ak} and Pλ and Pλ ′ two different
extreme points of M (N) induced by selections λ and λ ′
with corresponding characteristics χ and χ ′. Then Pλ and
Pλ ′ are adjacent (meaning connected through an edge of
M (N)) if and only if there is exactly one focal set A with
χ(A) 6= χ ′(A).

Proof: Assume that Pλ and Pλ ′ are adjacent and that there are
two different focal sets where the characteristics χ and χ ′ differ.
Look particularly at the smallest set Al and some other set Ar
where χ and χ ′ differ. Then Pλ and Pλ ′ differ at the two different
states ωλ (Al) and ωλ ′(Al). Since furthermore either ωλ (Ar) or
ωλ ′(Ar) is not in Al there exists a third state ωλ (Ar) or ωλ ′(Ar)
where Pλ and Pλ ′ differ, so Pλ and Pλ ′ could not be adjacent. This
shows that in fact adjacent extreme points have characteristics
that differ only on one focal set.

Let now λ and λ ′ be two selections with associated characteristics
χ and χ ′ that differ only on one focal set Al . For arbitrary ω ∈Ω
let i(ω) denote the index of the smallest focal set that contains
ω . Then for ω /∈ {ωλ (Al),ωλ ′(Al)} we have that Pλ ({ω}) = 0
if χ(Ai(ω)) 6= ω and otherwise if χ(Ai(ω)) = ω that

Pλ ({ω}) =





m(Ai(ω))+∑B∈{Ai(ω),...,Ak}
χ(B)=0

m(B) if i(ω)> l,

m(Ai(ω))+∑B∈{Ai(ω),...,Al−1}
χ(B)=0

m(B) if i(ω)< l.

So Pλ ({ω}) = Pλ ′({ω}). This means that Pλ and Pλ ′ differ at
most at two states (namely ωλ (Al) and ω ′λ (Al)) and since they are
different, they differ exactly at two states. Unfortunately, extreme
points that differ only at two states need not to be adjacent (see
for example the belief function of section 4) but in the case of
necessity measures this is the case. In fact, one can show with the
concepts of [20] that for extreme points with associated character-
istics that differ only at one focal set (or equivalently, for extreme
points that differ only at two states,) there exist permutations σ
and µ such that Pλ = pσ , Pλ ′ = pµ and the associated equivalence
classes [pσ ] and [pµ ] are neighboured in the network and thus Pλ
and Pλ ′ are adjacent. Details about this can be given upon request.

From Lemma 2 it follows that every extreme point Pλ has
|A1|−1+∑k

i=1(|Ai\Ai−1|) adjacent extreme points. With
this we can count the number of edges of M (N):

7Note that this definition depends on the numbering of the focal sets.
For the special case of necessity measures the focal sets are assumed to
be numbered in increasing cardinality.
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Theorem 4 Let N be a necessity measure with focal
sets F (N) = {A1 ⊂ A2 ⊂ . . . ⊂ Ak}. The number
|edges(M (N))| of edges of the core M (N) is given by

1
2
· |A1| ·

k

∏
i=2

(|Ai\Ai−1|+1) · (|A1|−1+
k

∑
i=2
|Ai\Ai−1|).

Proof: The statement about the number of edges follows simply
by counting for all extreme points Pλ all adjacent extreme points
Pλ ′ that form an edge with Pλ and by taking into account that with
this, every edge is counted two times.

We now compare our result with results given in [14, 13].
There, the results are given in the language of possibility
measures Π that are defined in a dual way as Π : 2Ω −→
[0,1] : A 7→ 1−N(Ac) and are then join preserving map-
pings particularly satisfying Π(A) = maxω∈A Π({ω}) and
are thus uniquely defined through πi := Π({ωi}). Further-
more, in the sequel we assume 0 < π1 ≤ π2 ≤ . . .≤ πn = 1
to simplify presentation. In [14, 13] the set S := {i ∈
{1, . . . ,n− 2} | πi+1 > πi} ∪ {n− 1} and its cardinality
s := |S| play an important role in establishing bounds for
the number of extreme points. In terms of the necessity
measure N the set S writes as S = {i ∈ {1, . . . ,n− 2} |
{ωi+1, . . . ,n} ∈F (N)}∪{n−1} and s equals the number
of non-elementary focal sets.

Theorem 5 ([14, 13]) 8 Let N be a necessity measure with
associated possibility measure Π satisfying 0 < π1 ≤ . . .≤
πn = 1. Let s denote the number of non-elementary focal
sets of N (or equivalently the cardinality of the set S = {i ∈
{1, . . . ,n−2} | πi+1 > πi}∪{n−1}). Then the core M (N)
is a n−1 dimensional simple polytope9 with n−1+s facets.
The number of extreme points is bounded by

|ext(M (N))| ≥ s(n−2)+2, (2)

|ext(M (N))| ≤
(

n−2+ s−b n−2
2 c

b n−1
2 c

)
+ (3)

(
n−2+ s−b n−1

2 c
b n−2

2 c

)

and by

|ext(M (N)| ≤ 2s
s

∏
j=1

(i j− i j−1) (4)

where i0 = 0 and i1, i2, . . . , is denote the increasingly or-
dered indices of the set S.

3 Illustration of the Results

We can now illustrate our results via an example taken
from [14, Example 2, p.242]. There, Ω = {ω1, . . . ,ω5}

8Note that unfortunately the bounds given in [14, Theorem 2] are
misprinted, the correct bounds can be found in [13].

9A d-dimensional polytope is called simple, if all vertices are con-
tained in exactly d facets.
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Figure 1: Illustration of the core of Example 2 given in
[14].

and a possibility measure Π is given by π1 = 0, π2 = π3 =
0.5, π4 = 0.75, π5 = 1. This translates to an associated
necessity measure N with focal elements A1 = {ω5}, A2 =
{ω4,ω5} and A3 = {ω2,ω3,ω4,ω5} and masses m(A1) =
0.25, m(A2) = 0.25, m(A3) = 0.5. Because of π1 = 0 we
have P({ω1})= 0 for all P∈M (N) and thus state ω1 plays
essentially no role and the core M (N) is a 3-dimensional
polytope that is uniquely described by the second, third and
fourth component of all probability vectors p of the core.

Figure 1 depicts the core of N. One can see its 6 extreme
points, its 9 edges and its 5 facets. This is in accordance
with Theorem 3, Theorem 4 and Theorem 5:

|ext(M (N))|= 1 ·2 ·3 = 6

|edges(M (N))|= 1
2
·1 ·2 ·3 · (0+1+2) = 9

| fac(M (N))|= 5−2+2 = 5.

Furthermore, exactly 0+1+2 = 3 edges meet at every ex-
treme point as argued in the leader of Theorem 4. The digit
sequence at every extreme point in Figure 1 indicates the
characteristic of the corresponding selection. For example
the sequence 503 at the extreme point in the foreground
means that the mass of A1 is assigned to ω5, the mass of
A2 is assigned to the same ω as the mass of A1 (thus to
ω5) and the mass of A3 is assigned to ω3. One can see that
the characteristics of two different extreme points differ
exactly at one position if and only if they are adjacent.

The extreme point with characteristic 500 is in a sense
distinguished because it is obtained as all mass is assigned
to one state ω5. For every arbitrary necessity measure there
exists (at least) one such degenerate extreme point p ∈Dn,
namely p = (0, . . . ,1). (If the smallest focal set contains k
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n−1 s 2n−1 l1 u1 u2 l3 u3
2 2 4 4 4 4 4 4
2 1 4 3 3 4 3 3
3 3 8 8 8 8 8 8
3 2 8 6 6 6 6 6
3 1 8 4 4 4 4 4
4 4 16 14 20 16 16 16
4 3 16 11 14 16 12 12
4 2 16 8 9 16 8 9
8 8 256 58 660 256 256 256
8 7 256 51 450 256 192 192
8 6 256 44 294 256 128 144
8 5 256 37 182 256 80 108
9 9 512 74 1430 512 512 512
9 8 512 66 990 512 384 384
9 7 512 58 660 512 256 288
9 6 512 50 420 512 160 216
10 5 1024 47 378 1024 112 243
15 5 32768 72 1584 7776 192 1024
20 5 1048576 97 5005 32768 272 3125
20 10 1048576 192 277134 1048576 6144 59049
m·s s 2m·s s(m·s−1)+2 (

(m+1)s+1−bm·s+1
2 c

bm·s
2 c

)+(
(m+1)s+1−bm·s

2 c
bm·s+1

2 c ) 2s·ms 2s−1·((m−1)s+2) (m+1)s

Table 1: Different bounds for the number of extreme points of the core of a necessity measure for different sizes of n−1
and s.

elements then there are even k degenerate extreme points).
This extreme point p is adjacent to extreme points of the
form (0, . . . ,πk, . . . ,1−πk) obtained bay assigning all mass
m(A) to ωk if ωk ∈ A and to ωn else.

Additionally, we can investigate the behaviour of the differ-
ent bounds for the number of extreme points for different
sizes of n−1 and s. Table 1 shows the exponential bound
2n−1 given in [15], the lower bound l1 and the upper bound
u1 of [14] (these are here the inequalities (2) and (3)) and
the upper bound u2 of [13] (here inequality (4)) obtained
by maximizing (4) under fixed sizes of n−1 and s). Addi-
tionally, the herein established bounds l3 and u3 obtained
via minimizing/maximizing (1) for fixed n− 1 and s are
given in the last columns. The last row shows the general
situation when n− 1 is a multiple of s. The sharp upper
bound u3 is obtained by choosing s focal sets A1, . . . ,As
with cardinality |Al |= l ·m+1 where m = (n−1)/s. One
can see that for fixed m this bound is exponential in s and in
the special case of m = 1 we get the bound 2s = 21·s = 2n−1

of [15]. For higher m the expansion rate of the exponential
growth of the extreme points in dependence on s is greater.
If the “density” 1

m of focal sets decreases and n is fixed,

then the number (m+ 1)s = (m+ 1)
n−1

m decreases. For a
fixed number of focal sets the number of extreme points
is polynomial in the reciprocal m of the density of focal
elements.

Our result on the description of the extreme points suggests

that it is possible to enumerate all extreme points in a time
proportional to (m+1)s · s because for every extreme point
one needs to add s mass values m(A) to some state ω∗ ∈ A
as p(ω∗) = p(ω∗)+m(A) to obtain this extreme point.

To get an impression about the possible gain in efficiency,
we compare the term (m+1)s ·s with the time two standard
enumeration procedures need to enumerate the extreme
points. We used implementations of firstly the Double
Description Method (cf., [8, 16]) and secondly the Reverse
Search Method (cf., [2]) to enumerate the extreme points
for different values of m and s and necessity measures that
maximize the number of extreme points for given values of
m and s.

Figure 2 shows the logarithm of the execution time10 t
in seconds in dependence of s (or m respectively) for the
Double Description Method11 where the value of m (or
s respectively) was fixed at different levels. The term
ln((m+1)s · s) = s ln(m+1)+ ln(s) is approximately lin-
early increasing in s (with slope roughly ln(m+ 1)) and
logarithmically increasing in m. Compared to this, the log
of computation time increases seemingly linearly in s, but
with higher slopes. For example for m = 7 the slope of
ln(t) is around 4 whereas the slope of ln((m+1)s · s) is

10We used a personal computer (64 bit) with an Intel(R) Xeon(R) CPU
(E5-2650v2, 2.60 Ghz, 2 cores).

11 We used the r-package rcdd (cf., [9]) which is an interface to the C++
implementation [8] of the Double Description Method.
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Figure 2: Different execution times of the Double Description Method together with the logarithm of a multiple of the term
(m+1)s · s (grey dashed lines) expected for an efficient enumerating procedure that uses our result.
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Figure 3: Different execution times of the Reverse Search Method together with the logarithm of a multiple of the term
(m+1)s · s (grey dashed lines) and the logarithm of a multiple of the term (m+1)s · (ms)2 (grey lines).
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somewhere around 2.3, so the expansion rate of the seem-
ingly exponential growth of computation time is larger than
the computation time expected for an ideal enumeration
procedure. Also the growing of ln(t) in dependence on m
seems to be linearly, so computation time seems to grow
also exponentially in m and not polynomially as would be
the case with an ideal enumeration procedure.

Figure 3 shows the results for the Reverse Search Method.12

For this method it is known (cf., [2, Theorem 6.2]) that for
simple polytopes the time complexity for enumerating the
extreme points is O(kn) per vertex, where n is the number
of variables and k is the number of inequalities in the H-
representation of the polytope. This would translate in our
case to a time complexity of O((m+1)s · (ms)2) since we
have (m+1)s vertices of a polytope of dimension n−1 =
m · s that could be described by O(n−1) inequalities (cf.,
[14, p.238]).

It turns out that the execution times are mostly smaller for
the Reverse Search Method compared to the Double De-
scription Method. In Figure 3 the grey dashed lines again
display the logarithm of a multiple of the term (m+1)s · s,
whereas the grey solid lines show the logarithm of a mul-
tiple of the term (m+ 1)s · (ms)2. One can see that the
theoretical time complexity of the Reverse Search Method
is roughly in accordance with the actually obtained execu-
tion times and that one could still gain some improvement
of performance if one uses our results to enumerate the ex-
treme points instead of using the Reverse Search Method.

4 Extension to Belief Functions

With the insight of Theorem 3 and its proof we have not
only an exact formula for the number of the extreme points
of the core of a necessity measure but also a possibility
to efficiently enumerate all extreme points. If we now
extend our focus from necessity measures to arbitrary belief
functions, then the analysis is more difficult, but Lemma 1
and Theorem 2 still hold. In the case of a necessity measure
it was possible to look recursively at ascending focal sets
and decide for every focal set if the corresponding mass
should be assigned somewhere into the previous focal set
(and then the previous focal set would already determine
to which exact ω the mass should be assigned to actually
obtain an extreme point) or if the mass should be assigned
somewhere outside of the previous focal set and then every
possible assignment would in fact lead to an extreme point.

If the focal sets are not nested then in the first place it is not
clear with which focal set one should start some recursive
procedure and how to proceed the recursion. But it is still
possible to do a not too inefficient recursion that could
generate a set of candidates of extreme points that actually
includes all extreme points. One can (totally) order the

12We used the library lrslib, see http://cgm.cs.mcgill.ca/ avis/C/lrs.html.

no. ωλ (Ai) Pλ
1 5 5 4 5 0 0 0 0.2 0.8
2 5 5 3 5 0 0 0.2 0 0.8
3 5 5 3 3 0 0 0.6 0 0.4
4 5 5 2 5 0 0.2 0 0 0.8
5 5 5 2 2 0 0.6 0 0 0.4
6 5 4 4 4 0 0 0 0.8 0.2
7 5 4 3 3 0 0 0.6 0.2 0.2
8 5 4 2 2 0 0.6 0 0.2 0.2

Table 2: Summary of altogether 8 candidates of selections
that could lead to extreme points.

focal sets in an arbitrary way that at least respects the order
of set inclusion of the focal sets to make the recursion not
unnecessarily ineffective. One possibility would be to order
the focal sets according to their cardinality or another sort
of rank function. (The linear ranking via cardinality is then
not completely determined, so here comes some sort of
arbitrariness into play). Then one could analogously go
through ascending focal sets Ai and decide with the help
of Theorem 2 to which state ω ∈ Ai the mass m(Ai) should
be assigned to actually obtain an extreme point. Then
for a possible candidate of a selection λ that is already
determined on the focal sets A1, . . . ,Al one has to decide
for the assignment of the mass m(Al+1) to some ω∗ ∈ Al+1
if this candidate ω∗ is contained in some previous focal
set A ∈ {A1, . . . ,Al}. If this is the case and if furthermore
ωλ (A) ∈ Al+1 and ωλ (A) 6= ω∗ the assignment of the mass
m(Al+1) to this ω∗ could be excluded, because it could
not lead to an extreme point. (Note that in the case of a
necessity measure it was enough to look only at the direct
predecessor set Al .)

We now shortly illustrate this recursive procedure via an
example. Take Ω = {ω1, . . . ,ω5} and focal sets A1 = {ω5},
A2 = {ω4,ω5}, A3 = {ω2,ω3,ω4}, A4 = {ω2,ω3,ω4,ω5}.
The indices indicate the ordering of the focal sets, here
corresponding to the cardinality of the focal sets. In terms
of focal sets this example is like the example above with
the only exception that we added the focal set A3 to make
the focal sets not nested. As masses take for example
m(A1) = 0.2, m(A2) = 0.2, m(A3) = 0.2, m(A4) = 0.4.

Table 2 shows all 8 selections obtained by the recursive
procedure that could possibly lead to extreme points. The
second column describes the corresponding selections. For
example the digit sequence 5535 means that the masses
of A1,A2 and A4 are assigned to ω5 and the mass of A3
is assigned to ω3. This is similar to the digit sequence
describing the characteristics in Figure 1, but note that for
example selections 2 and 3 have the same characteristic and
this is the only reason for choosing this description. The
third column shows the 5 components of the corresponding
extreme point candidates.
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Figure 4 shows the resulting core of the belief function for
this example (black) together with the core of the necessity
measure of the previous example (grey). One can see that
compared to the necessity measure, the belief function has
an extra facet and altogether 8 extreme points. In contrast
to necessity measures, here for example the extreme points
no. 1 and no. 8 differ only at two states but are not adjacent.
Furthermore, for this example all 8 candidates of Table
2 are in fact extreme points, but this is generally not the
case. A simple counterexample is Ω = {ω1,ω2,ω3} and
focal sets A1 = {ω1,ω2}, A2 = {ω1,ω3}, A3 = {ω2,ω3}.
Then Theorem 2 could not exclude any selection candidate.
But for example with m(A1) = m(A2) = m(A3) =

1
3 and

a selection with characteristic 132 we get an associated
point p = ( 1

3 ,
1
3 ,

1
3 ). But this point is no extreme point of

the core because it is a convex combination of the actual
extreme points p1 = (0, 2

3 ,
1
3 ) and p2 = ( 2

3 ,0,
1
3 ) obtained

by the selections with characteristics 232 and 113.

To exclude selections that do not lead to extreme points
one can simultaneously consider the characterization of
the extreme points given e.g. in [4, Proposition 9, p.274,
Proposition 13, p.277]: Every extreme point of the core
of a belief function (or even more generally a capacity
of order 2) can be obtained via a total order < on Ω and
an associated selection λ that assigns all mass of a focal
set A to the greatest element (w.r.t. <) of A. The selec-
tion with characteristic 132 of the above counterexample
is obviously no λ associated to some total order < be-
cause from ωλ ({ω1,ω2}) = ω1 it follows ω2 < ω1 and
with ωλ ({ω1,ω3}) = 3 we have ω1 < ω3, so ω2 < ω3, but
this is in contradiction with ωλ ({ω2,ω3}) = ω2. So with
this “double description” of the extreme points one could
exclude candidates of selections that do not lead to extreme
points.13 If we do this, then finally the question remains, if
we possibly enumerate some of the extreme points more
than one time with this modified procedure. Fortunately,
we are able to show that this is not the case:

Theorem 6 Let λ1 and λ2 be two different selections in-
duced by some orderings <1 and <2 on Ω. Assume further-
more that for i = 1,2 and for all focal sets A and A′ the
relation

{ωλi(A),ωλi(A
′)} ⊆ A∩A′ =⇒ ωλi(A) = ωλi(A

′)

of Theorem 2 is satisfied. Then the associated extreme
points Pλ1 and Pλ2 are different.

Proof: Look at the (non-empty) system D := {A ∈ F (Bel) |
ωλ1

(A) 6= ωλ2
(A)}. Then take that set B ∈ D such that the as-

sociated ωλ2
(B) is minimal w.r.t. <1. Then the mass of B is

transferred by λ2 to ω :=ωλ2
(B), so Pλ2

({ω}) = . . .+m(B)+ . . .,

13Another way to exclude transportations that do not lead to extreme
points would be to check, if the selection is consistent in the sense of
[5, p.25], cf. also Lemma 2 therein. Furthermore, also in the context of
qualitative capacities the situation is similar, cf., [7, p.13].
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Figure 4: Comparison of the core of a necessity measure
and a belief function.

but the mass of B is not transferred by λ1 to ω . If Pλ1
({ω}) =

Pλ2
({ω}) then there has to be another set B̃ ∈ D whose mass is

transferred by λ1 to ω but not by λ2 to ω , so for the element
ω̃ := ωλ2

(B̃) ∈ B̃ we have ω̃ <1 ω , but this is in contradiction
to the minimality of ωλ2

(B) w.r.t. <1. So Pλ1
({ω}) 6= Pλ2

({ω})
and the two extreme points Pλ1

and Pλ2
are different.

With this we can efficiently enumerate the extreme points
of an arbitrary belief function (on a finite space).

If the only task is to compute all extreme points, then an-
other nice option of preprocessing could be simplifying in
some situations: One could firstly factorize the space Ω
according to the equivalence relation∼ of indistinguishabil-
ity: Two states ω and ω ′ are indistinguishable if every focal
set A either contains both ω and ω ′ or contains neither ω
nor ω ′. Especially if there are only few focal sets on a big
space Ω then the quotient space W := Ω/∼ could be much
smaller. One can then look at the associated belief function
Bel/∼ : 2W −→ [0,1] : A 7→Bel(

⋃
A) and compute in a first

step the extreme points of Bel/∼. The extreme points of the
original belief function Bel can then be obtained by decid-
ing in a second step for every extreme point P/∼ of Bel/∼
and every equivalence class w = [ω] with P/∼({w}) > 0
to which ω ∈ w the mass P/∼({w}) assigned to the equiva-
lence class w should be further assigned.

5 Conclusion

In this paper we worked out a combinatorial description of
the extreme points of a necessity measure on a finite space.
We treated necessity measures as special kinds of belief
functions and were thus able to apply parts of our results
also to arbitrary belief functions. Based on this we gave
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a possible procedure of seemingly efficiently enumerating
the extreme points of belief functions.

For the case of arbitrary belief functions we did not ex-
plicitly analyze the complexity of enumeration procedures
that use our results. This is a possible direction of further
research.

Related to this there are a lot of further combinatorial ques-
tions. For instance: Is there a non-trivial bound for the
number of extreme points in terms of the number of focal
sets? Or: What is the maximal number of extreme points of
a belief function where the set of focal elements builds an
ordered set (w.r.t. set inclusion) that has a fixed width?14

Another direction of further research could be to analyze
which parts of the given theorems and considerations of
this paper still hold in the case of capacities of order 2 that
are not belief functions.
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