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Abstract
In this paper we explore relaxations of (Williams) co-
herent and convex conditional previsions that form the
families of n-coherent and n-convex conditional previ-
sions, at the varying of n. We investigate which such
previsions are the most general one may reasonably
consider, suggesting (centered) 2-convex or, if posi-
tive homogeneity and conjugacy is needed, 2-coherent
lower previsions. Basic properties of these previsions
are studied. In particular, centered 2-convex previsions
satisfy the Generalized Bayes Rule and always have a
2-convex natural extension. We discuss then the ra-
tionality requirements of 2-convexity and 2-coherence
from a desirability perspective. Among the uncer-
tainty concepts that can be modelled by 2-convexity,
we mention generalizations of capacities and niveloids
to a conditional framework.

Keywords. Williams coherence, 2-coherent previ-
sions, 2-convex previsions, Generalized Bayes Rule.

1 Introduction

In his influential book [16], P. Walley developed a
behavioural approach to imprecise probabilities (and
previsions) extending de Finetti’s [4] interpretation of
precise previsions in terms of coherence. Operationally,
this was achieved through a relaxation of de Finetti’s
betting scheme.

In fact, following de Finetti, P is a coherent pre-
cise prevision on a set S of gambles if and only
if for all m, n ∈ N0, s1, . . . , sm, r1, . . . , rn ≥
0, X1, . . . , Xm, Y1, . . . , Yn ∈ S, defining G =∑m

i=1 si(Xi − P (Xi))−
∑n

j=1 rj(Yj − P (Yj)), it holds
that supG ≥ 0. The terms si(Xi − P (Xi)), rj(Yj −
P (Yj)) are proportional (with coefficients or stakes
si, rj) to the gains arising from, respectively, buying
Xi at P (Xi) or selling Yj at P (Yj). A coherent lower
prevision P on S may be defined in a similar way, just
restricting n to belong to {0, 1}. This means that the

betting scheme is modified to allow selling at most one
gamble. Several other betting scheme variants have
been investigated in the literature, either extending
coherence for lower previsions (conditional lower pre-
visions) or weakening it (previsions that are convex,
or avoid sure loss). In particular, a convex lower pre-
vision is defined introducing a convexity constraint
n = 1,

∑m
i=1 si = r1 = 1 in the betting scheme. In [16,

Appendix B] n-coherent previsions are studied, as a
different relaxation of coherence.

In this paper, we explore further variations of the be-
havioural approach/betting scheme: n-coherent and
n-convex conditional lower previsions, formally defined
later on as generalisations of the n-coherent (uncondi-
tional) previsions in [16]. Our major aims are:

a) to explore the flexibility of the behavioural ap-
proach and its capability to encompass different
uncertainty models;

b) to point out which are the basic axioms/properties
of coherence which hold even for much looser
consistency concepts.

Referring to b) and with a view towards the utmost
generality, we shall mainly concentrate on the extreme
quantitative models that can be incorporated into a
(modified) behavioural approach. This does not imply
that these models should be regarded as preferable
to coherent lower previsions. On the contrary they
will not, as far as certain questions are concerned.
For instance, inferences will typically be rather vague.
However, it is interesting and somehow surprising to
detect that certain properties like the Generalised
Bayes Rule must hold even for such models, or that
they can be approached in terms of desirability.

N -coherence and n-convexity may be naturally seen
as relaxations of, respectively, (Williams) coherence
and convexity. These and other preliminary concepts
are recalled in Section 2. Starting from the weakest
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reasonably sound consistency concepts, we explore ba-
sic properties of 2-convex lower previsions in Section 3.
We supply a characterisation by means of axioms, on a
special set of conditional gambles generalising a linear
space and termed DLIN (Definition 2). Interestingly,
it turns out that n-convexity with n ≥ 3 and convexity
are equivalent on DLIN . 2-convex previsions exhibit
some drawbacks: a 2-convex natural extension may
be defined, but its finiteness is not guaranteed; the
property of internality may fail, as well as agreement
with conditional implication (the Goodman-Nguyen
relation). In Section 4, we show that the special subset
of centered 2-convex previsions is not affected by these
problems. In Section 5, 2-coherent lower previsions are
discussed and characterised on DLIN (Proposition 8).
Again, n-coherence (n ≥ 3) and coherence are equiva-
lent on DLIN . On generic sets of gambles, n-coherent
previsions (n ≥ 3) have no n-coherent extension on
sufficiently large supersets whenever the equivalence
does not hold. We show also that 2-coherence should
be preferred to 2-convexity when positive homogeneity
and conjugacy are required. In Section 6 we analyse
2-convexity and 2-coherence in a desirability approach.
Generalising prior work by Williams [17, 18] for coher-
ence, we focus on the correspondence between these
previsions and sets of desirable gambles, and on estab-
lishing the ensuing desirability rules. Models that can
be accommodated into the framework of 2-convexity,
but not of coherence, are presented in Section 7. These
are conditional versions of capacities and niveloids.
Section 8 concludes the paper. Due to spacing con-
straints, proofs of the results are omitted (some can
be partly derived from results in [10, 12]).

2 Preliminaries

The starting points for our investigation are the known
consistency concepts of coherent and convex lower
conditional prevision [10, 11, 17, 18]. They both refer
to an arbitrary set D of conditional gambles, that is
of conditional bounded random variables. We denote
with X|B a generic conditional gamble, where X is
a gamble and B is a non-impossible event (B 6= ∅).
It is understood here that X : IP → R is defined on
an underlying partition IP of atomic events ω, and
that B belongs to the powerset of IP . Therefore, any
ω ∈ IP implies either B or its negation ¬B (in words,
knowing that ω is true determines the truth value of
B, i.e. B is known to be either true or false). Given
B, the conditional partition IP |B is formed by the
conditional events ω|B, such that ω implies B (implies
that B is true) and X|B : IP |B → R is such that
X|B(ω|B) = X(ω), ∀ω|B ∈ IP |B. Because of this
equality, several computations regarding X|B can be
performed by means of the restriction of X on B. In

particular, it is useful for the sequel to recall that
sup(X|B) = supB X, and inf(X|B) = infB X.

As special cases, we have that X|Ω = X is an uncon-
ditional gamble, A|B a conditional event if A is an
event (or its indicator IA - we shall generally employ
the same notation A for both).

As customary, a lower prevision P is, without fur-
ther qualifications, a map from D into the real line,
P : D → R. However, a lower prevision is often inter-
preted as a supremum buying price [16]. For instance,
if a subject assigns P (X|B) to X|B, he is willing to
buy X, conditional on B occurring, at any price lower
than P (X|B). Under this behavioural interpretation,
Definitions 1, 3, 5 check the consistency of P , depend-
ing on whether it avoids losses bounded away from 0,
according to different buying and selling constraints.

Definition 1. Let P : D → R be given.

a) P is a coherent conditional lower prevision on
D iff, for all m ∈ N0, ∀X0|B0, . . . , Xm|Bm ∈
D, ∀s0, . . . , sm real and non-negative, defining
S(s) =

∨{Bi : si 6= 0, i = 0, . . . ,m} and
G =

∑m
i=1 siBi(Xi − P (Xi|Bi)) − s0B0(X0 −

P (X0|B0)), it holds, whenever S(s) 6= ∅, that
sup{G|S(s)} ≥ 0.

b) P is a convex conditional lower prevision on
D iff, for all m ∈ N+, ∀X0|B0, . . . , Xm|Bm ∈
D, ∀s1, . . . , sm real and non-negative such that∑m

i=1 si = 1 (convexity constraint), defining Gc =∑m
i=1 siBi(Xi−P (Xi|Bi))−B0(X0−P (X0|B0)),

S(s) =
∨{Bi : si 6= 0, i = 1, . . . ,m}, it holds that

sup{Gc|S(s) ∨B0} ≥ 0.

b1) P is centered convex or C-convex on D iff it
is convex and, ∀X|B ∈ D, it is 0|B ∈ D and
P (0|B) = 0.

In the behavioural interpretation recalled above, Defi-
nition 1a) considers buying at mostm conditional gam-
bles X1|B1, . . . , Xm|Bm (also no one, when m = 0)
at prices P (X1|B1), . . . , P (Xm|Bm), respectively, and
selling at most one gamble X0|B0 at a supremum
buying price P (X0|B0). The gain G is a linear combi-
nation with stakes s0, . . . , sm of the gains from these
transactions. It is conditioned on S(s), to rule out both
trivial transactions (G = 0, since s1 = . . . = sm = 0)
and the case that G = 0 because no transaction takes
place (when B0, . . . , Bm are all false). Then, coher-
ence requires the non-negativity of the supremum of
G, conditional on at least one non-trivial transaction
being effective. The interpretation of Definition 1b) is
similar: what changes is the convexity constraint on
the stakes (s0 = 1), s1, . . . , sm. This implies that Gc

is the gain from one selling transaction and at least
one buying transaction.
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The definition of coherent lower prevision is a struc-
ture free version of Williams coherence, discussed in
[11]. It is more general than Walley’s coherence [16],
in particular it always allows for a natural extension
and is not necessarily conglomerable. The notion of
convex lower prevision is still more general, and was
introduced in [10], extending the unconditional convex-
ity studied in [9]. Convex previsions can incorporate
various uncertainty models, including convex risk mea-
sures, non-normalised possibility measures, and others.
However, the special subclass of C-convex lower previ-
sions guarantees better consistency properties. Among
these, there always exists a convex natural extension
of these measures, whose properties are analogous to
those of the natural extension [10, Theorem 9].

Even though coherent and convex lower previsions can
be defined on any set of conditional gambles, they are
characterised by a few axioms on the special environ-
ment DLIN defined next.
Definition 2. Let X be a linear space of gambles
and B ⊂ X the set of all (indicators of) events in
X . Suppose 1 ∈ B and BX ∈ X ,∀B ∈ B,∀X ∈ X .
Setting B∅ = B − {∅}, define

DLIN = {X|B : X ∈ X , B ∈ B∅}. (1)

The sets DLIN may be viewed as conditional generali-
sations of linear spaces of (unconditional) gambles. In
fact, when B = {Ω,∅}, DLIN reduces to a linear space
of unconditional gambles (including real constants).
Not surprisingly then, characterisations on DLIN have
an unconditional counterpart on linear spaces.
Proposition 1. Let P : DLIN → R be a conditional
lower prevision.

a) P is coherent on DLIN if and only if [18]

(A1) P (X|B)− P (Y |B) ≤ sup{X − Y |B},
∀X|B, Y |B ∈ DLIN .1

(A2) P (λX|B) = λP (X|B),
∀X|B ∈ DLIN ,∀λ ≥ 0.

(A3) P (X + Y |B) ≥ P (X|B) + P (Y |B),
∀X|B, Y |B ∈ DLIN .

(A4) P (A(X − P (X|A ∧B))|B) = 0,
∀X ∈ X ,∀A,B ∈ B∅ : A ∧B 6= ∅.

b) P is convex on DLIN if and only if (A1), (A4)
and the following axiom hold [10, Theorem 8]

(A5) P (λX + (1 − λ)Y |B) ≥ λP (X|B) + (1 −
λ)P (Y |B),∀X|B, Y |B ∈ DLIN ,∀λ ∈]0, 1[.

1 (A1) may be replaced by P (X|B) ≥ inf(X|B), ∀X|B ∈
DLIN , thus corresponding to the original version in [18].

Condition (A4) is the Generalised Bayes Rule (GBR),
introduced in [17, 18] and studied also in [16] in the
special case B = Ω.

Since our discussion will focus on minimal consistency
properties for a conditional lower prevision, we have to
mention a conditional generalisation of the implication
(inclusion) relation between events, termed Goodman-
Nguyen relation (≤GN ). In fact, suppose A⇒ B (or
A ⊆ B). Then, asking that µ(A) ≤ µ(B) is a really
minimal rationality requirement for any µ aiming at
measuring how likely an event is, given that, whenever
event A will turn to be true, B will be true too. The
following extension of the implication to conditional
events was proposed in [8]:

A|B ≤GN C|D iff A ∧B ⇒ C ∧D
and ¬C ∧D ⇒ ¬A ∧B. (2)

The Goodman-Nguyen relation ≤GN was extended to
conditional gambles in [12]:

X|B ≤GN Y |D iff
IBX + I¬B∨D sup(X|B) ≤ IDY + IB∨¬D inf(Y |D)

showing that X|B ≤GN Y |D implies P (X|B) ≤
P (Y |D) for a C-convex or coherent P [12, Proposition
10].

3 2-Convex Lower Previsions

In Definition 1, a) and b), there is no upper bound
to m ∈ N. One may think of introducing it as a
natural way of weakening coherence and convexity.
More precisely, let us call elementary gain on Xi|Bi

any term siBi(Xi − P (Xi|Bi)), with the proviso that
−B0(X0 − P (X0|B0)) in Definition 1 b) is also an
elementary gain, formally corresponding to s0 = −1.
Then, we may state that no more than n elementary
gains are allowed in either G (Definition 1, a)) or Gc

(Definition 1, b)). When doing so, we speak of n-
coherent or n-convex lower previsions. This approach
extends the notion of n-coherent (unconditional) pre-
vision in [16, Appendix B].

Intuition suggests that the smaller n is, the more the
corresponding consistency concept is looser. In the
extreme cases n may be as small as 1 with coherence,
2 with convexity.

However, 1-coherence is too weak. In fact, P
is 1-coherent on D iff, ∀X0|B0 ∈ D, ∀s0 ∈ R,
sup{s0B0(X0 − P (X0|B0))|B0} ≥ 0. It is easy to
see that this is equivalent to internality, i.e. to re-
quiring that P (X0|B0) ∈ [inf(X0|B0), sup(X0|B0)],
∀X0|B0 ∈ D.
Since internality alone does not seem enough as a ra-
tionality requirement, we turn our attention in this
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section to what seems to be the next weakest consis-
tency notion, that is 2-convexity.2

Definition 3. P : D → R is a 2-convex conditional
lower prevision on D iff, ∀X0|B0, X1|B1 ∈ D, we have
that

sup{B1(X1 − P (X1|B1))−
B0(X0 − P (X0|B0))|B0 ∨B1)} ≥ 0. (3)

We explore now some basic features of 2-convex previ-
sions. Some critical aspects are discussed next, show-
ing in Section 4 that they can be solved resorting to
the subclass of centered 2-convex previsions.

A remarkable result in our framework is the charac-
terisation of 2-convexity on a structured set DLIN .

Proposition 2. A conditional lower prevision P :
DLIN → R is 2-convex on DLIN if and only if (A1)
and (A4) hold.

To point out an important consequence of Proposition
2, compare it with Proposition 1 b). It follows at once
that the difference between 2-convexity and convexity,
on DLIN , is due to axiom (A5). On the other hand,
the proof that a convex prevision on DLIN must satisfy
(A5), given in [10, Theorem 8], only involves a gain Gc

made up of 3 elementary gains, i.e. it does not fully
exploit convexity, but only 3-convexity. This justifies
the following conclusion:

On DLIN , n-convexity with n ≥ 3 and convexity are
equivalent concepts.

Hence, the very difference between convexity and n-
convexity reduces to that between convexity and 2-
convexity, at least on DLIN . Yet, if P is defined on a
set D other than DLIN , we may think of extending it
to some DLIN ⊃ D. If P is n-convex on D, n ≥ 3, and
has an n-convex extension to DLIN , then P is convex
on DLIN and therefore also on D. It ensues that if
P is n-convex (n ≥ 3) but not convex on D, P will
have no n-convex extension on any sufficiently large
superset of D (any D∗ including some DLIN containing
D) - see also the later Example 2. This is a negative
aspect of n-convexity, when n ≥ 3. More generally, the
discussion above shows that n-convex previsions are
not particularly significant as an autonomous concept,
when n ≥ 3.

Turning again to 2-convex previsions, let us define a
special extension, the 2-convex natural extension.

Definition 4. Given a lower prevision P : D → R

2 2-convex previsions were termed 1-convex in [1, 12]. Here
we prefer the locution ‘2-convex’ by analogy with the rule for
fixing n in ‘n-coherent’ in [16].

and an arbitrary conditional gamble Z|B, let

L(Z|B) = {α :
sup{A(X − P (X|A)) −B(Z − α)|A ∨B} < 0,

for some X|A ∈ D}. (4)

Then the 2-convex natural extension E2c of P on Z|B
is

E2c(Z|B) = supL(Z|B). (5)

In general, E2c(Z|B) may not be real-valued (i.e. +∞,
or −∞ when L(Z|B) = ∅). The results in the next
proposition are helpful in hedging this occurrence.
Proposition 3. a) L(Z|B) 6= ∅, if there exists

Y |C ∈ D such that C ⇒ B.

b) Let P be 2-convex and such that 0|B ∈ D and
P (0|B) = 0, ∀X|B ∈ D. Given 0|C /∈ D, the
extension of P on D∪{0|C} such that P (0|C) = 0
is 2-convex.

c) When L(Z|B) 6= ∅, L(Z|B) =]−∞, E2c(Z|B)[.

d) If L(Z|B) 6= ∅ and sup(X|A) ≥ P (X|A), ∀X|A ∈
D, then E2c(Z|B) ≤ sup(Z|B), ∀Z|B.

e) Let P be 2-convex and 0|B ∈ D, ∀X|B ∈ D.
Then, ∀X|B ∈ D, sup(X|B) ≥ P (X|B) iff
P (0|B) ≤ 0.

Parts a) and b) of Proposition 3 suggest a simple way
to ensure E2c(Z|B) 6= −∞: just add the gamble 0|B
to D, putting P (0|B) = 0. To guarantee E2c(Z|B) 6=
+∞, it is sufficient that any 0|C in D (or added to
D) is given a non-positive lower prevision, by d) and
e). Clearly, the simplest and most obvious choice
is to put P (0|C) = 0, ∀0|C. This would make P a
centered 2-convex lower prevision; in the remainder of
this section we do not however rule out the possibility
that P (0|C) 6= 0 for some 0|C.
The properties of the 2-convex natural extension are
very similar to those of the natural extension:
Proposition 4. Let P : D → R be a lower prevision,
with D ⊆ DLIN . If E2c is finite on DLIN , then

a) E2c(X|B) ≥ P (X|B), ∀X|B ∈ D.

b) E2c is 2-convex on DLIN .

c) If P ∗ is 2-convex on DLIN and P ∗(X|B) ≥
P (X|B), ∀X|B ∈ D, then P ∗(X|B) ≥
E2c(X|B), ∀X|B ∈ DLIN .

d) P is 2-convex on D if and only if E2c = P on D.

e) If P is 2-convex on D, E2c is its smallest 2-convex
extension on DLIN .
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In words, the 2-convex natural extension dominates
P (by a)), characterises 2-convexity (by d)) and is the
least-committal 2-convex extension of P (by b), c),
e)).

Being rather weak a consistency concept, 2-convexity
may not satisfy a number of properties which neces-
sarily hold for coherent lower previsions. For instance,
the positive homogeneity axiom (A2) of Proposition 1,
P (λX|B) = λP (X|B), with λ ≥ 0, may not hold, not
even weakening it to

P (λX|B) ≥ λP (X|B),∀λ ∈ [0, 1]. (6)

(Unconditional versions of (6) hold for centered convex
previsions.)

It can instead be shown that
Proposition 5. If, given λ ∈ R, P is 2-convex on
D ⊇ {X|B, λX|B}, then necessarily

inf{(λ− 1)X|B}+ P (X|B) ≤ P (λX|B)
≤ sup{(λ− 1)X|B}+ P (X|B). (7)

Condition (7) seems rather mild, as the next example
points out.
Example 1. Given D = {X|B, 2X|B} (λ = 2), where
the image of X|B is [−1, 1] and P (X|B) = 0.2, equa-
tion (7) gives the bounds P (2X|B) ∈ [−0.8, 1.2]. It
is easy to check that P is 2-convex on D whatever
is the choice for P (2X|B) in the interval [−0.8, 1.2].
According to the value for P (2X|B) selected in this
interval, it may be P (2X|B) R 2P (X|B).

An annoying feature of 2-convexity is that internality
may fail, i.e. P (X|B) need not belong to the closed
interval [inf(X|B), sup(X|B)]. Thus, 2-convex pre-
visions may not satisfy a property holding even for
1-coherent previsions.

It has to be noticed that 2-convexity permits no com-
plete freedom in departing from internality. There
are two issues to be emphasized with respect to this
question. The first tells us that lack of internality
cannot be two-sided, because of the following result.
Proposition 6. If P : D → R is 2-convex on
D and P (Y |D) < inf(Y |D) for some Y |D ∈ D,
then P (X|B) ≤ sup(X|B), ∀X|B ∈ D. Similarly,
P (Y |D) > sup(Y |D) for some Y |D ∈ D implies
P (X|B) ≥ inf(X|B), ∀X|B ∈ D.

The second is the observation that 2-convexity imposes
a sort of, so to say, two-component internality. To see
this, note that
Lemma 1. If P : D → R is 2-convex on D, and X|B,
Y |B ∈ D, then

inf{X − Y |B} ≤ P (X|B)− P (Y |B)
≤ sup{X − Y |B}. (8)

Recall now that P (X|B) is interpreted as a supremum
buying price for X|B, and that Definition 3 ensures
that buying X|B for P (X|B) and selling Y |B at its
supremum buying price P (Y |B) would be (marginally)
acceptable for 2-convexity. Then, equation (8) tells
us that the profit P (X|B) − P (Y |B) from this two-
component exchange (X|B vs. Y |B) guarantees no
arbitrage. For instance, it cannot exceed sup{X −
Y |B}.
As a further critical issue with 2-convexity, we have
that the Goodman-Nguyen relation may not induce
an agreeing ordering on a 2-convex prevision. This
is tantamount to saying that the partial ordering of
some 2-convex conditional previsions may conflict with
the ordering of the extended implication (inclusion)
relation ≤GN .

For instance, from (2), if B ⇒ C then 0|C ≤GN

0|B. Agreement with the Goodman-Nguyen relation
requires P (0|C) ≤ P (0|B) to hold, but it can be proven
that if P (0|B) < 0 and B ⇒ C, then 2-convexity asks
instead that P (0|C) ≥ P (0|B) (the inequality may be
strict).

4 Centered 2-Convex Lower
Previsions

The critical issues on 2-convexity discussed in the
preceding section can be solved or softened requiring
the additional property

∀X|B ∈ D, 0|B ∈ D and P (0|B) = 0, (9)

i.e. restricting our attention to centered 2-convex
conditional lower previsions. This is shown in the
following proposition.
Proposition 7. Let P : D → R be a centered 2-convex
lower prevision on D. Then,

a) ∀X|B ∈ D, P (X|B) ∈ [inf X|B, supX|B].

b) P has a finite 2-convex natural extension E2c on
any superset of D.

c) X|B ≤GN Y |D implies P (X|B) ≤ P (Y |D).

Comment. The condition P (0|B) = 0 appears as
obvious, and in fact guarantees more satisfactory prop-
erties to 2-convexity. In our view, the main reason
for considering the alternative P (0|B) 6= 0 is to en-
compass additional uncertainty models. This is patent
already in the unconditional framework: convex risk
measures, as introduced in [6, 7], correspond to convex,
not necessarily centered previsions [9].

Note that by Proposition 7 a) centered 2-convexity
implies 1-coherence, while being obviously implied by
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2-coherence. Hence, the centering condition P (0|B) =
0 appears as a technical instrument to guarantee that
the lower prevision P satisfies more properties than a
generic 2-convex prevision, without having to assume
the more demanding properties of 2-coherence.

5 2-Coherent Lower Previsions

Our next step is a discussion of which additional prop-
erties are achieved by 2-coherent lower prevision.
Definition 5. P : D → R is a 2-coherent lower previ-
sion on D iff ∀X0|B0, X1|B1 ∈ D, ∀s1 ≥ 0, ∀s0 ∈ R,
defining S(s) =

∨{Bi : si 6= 0, i = 0, 1} we have that,
whenever S(s) 6= ∅,

sup{s1B1(X1 − P (X1|B1))−
s0B0(X0 − P (X0|B0))|S(s)} ≥ 0. (10)

2-coherent lower previsions are characterized on DLIN

as follows:
Proposition 8. Let P : DLIN → R be a conditional
lower prevision. P is 2-coherent on DLIN if and only
if (A1), (A2), (A4) and the following axiom hold:

(A6) P (X|B) ≤ −P (−X|B).

Remark 1. Proposition 8 can be equivalently restated
replacing axiom (A1) with

(A7) If X|B, Y |B ∈ DLIN , µ ∈ R are such that X|B ≥
Y |B + µ, then P (X|B) ≥ P (Y |B) + µ.

In fact, it can be easily verified that (A1) and (A7)
are equivalent.

Comment A comparison of Propositions 1 and 8 is use-
ful in detecting at once two major differences between
(centered) 2-convex and 2-coherent previsions.

One is positive homogeneity (axiom (A2)), a condi-
tion which, on any set D, is necessary for 2-coherence,
but not for 2-convexity. The need for positive ho-
mogeneity depends on the specific model we wish to
consider. We might be willing to reject it in some
instance, typically because of liquidity risk considera-
tions. Basically, this means that for a large positive λ
difficulties might be encountered at exchanging λX|B
at a price P (λX|B) = λP (X|B), because of lack of
market liquidity at some degree.

The second difference is pointed out by axiom (A6). To
fix its meaning, recall that given P (X|B), its conjugate
upper prevision P (X|B) is defined by

P (X|B) = −P (−X|B). (11)

Hence, by (11) axiom (A6) ensures that P (X|B) ≥
P (X|B), ∀X|B ∈ DLIN .

Therefore, 2-coherence is preferable to 2-convexity
whenever we fix an upper (P ) and a lower (P ) bound
for the uncertainty evaluation of X|B, while keeping
positive homogeneity.

As an aside to the above discussion, we note that 2-
coherence requires a weak form of homogeneity when
λ < 0:
Proposition 9. Given λ < 0, if P is 2-coherent
on D ⊇ {λX|B,X|B}, then necessarily P (λX|B) ≤
λP (X|B).

Compare Propositions 8 and 1, a). Recalling that any
2-coherent lower prevision satisfies internality (being
1-coherent too), while (A6) is a necessary condition
for coherence, only the superlinearity axiom (A3) dis-
tinguishes 2-coherence and coherence on DLIN . From
this, deductions on the role of n-coherence, n ≥ 3,
can be made which are quite analogue to those on n-
convexity in Section 3. This time, it can be shown that
any n-coherent lower prevision, n ≥ 3, must satisfy
(A3), and hence that:

On DLIN , n-coherence with n ≥ 3 and coherence are
equivalent concepts.

And again, we may in general argue that n-coherence
has no special relevance, compared to coherence, when
n ≥ 3. In particular, n-coherent extensions of an n-
coherent P exist on sufficiently large sets if and only
if P is coherent.

The latter concept is illustrated in the next example,
elaborating on Example 2.7.6 in [16].
Example 2. Let IP = {a, b, c, d} be a partition of
the sure event Ω. Define P on the powerset of IP as
follows:

• P (Ω) = 1

• P (E) = 1
2 if E is made up of 2 or 3 elements of

IP , one of which is a.

• P (E) = 0 otherwise.

It is shown in [16] that P is not coherent, while being
3-coherent, and hence also 3-convex. We show now
that P has no 3-convex extension to the linear space
L(IP ) of all gambles defined on IP .

In fact, suppose a 3-convex extension, also termed P ,
exists, and define A = a, B = a∨b, C = a∨c, D = a∨
d. Note that, by applying (7) with λ = 1

2 , X = A and
B = Ω, we get P ( 1

2A) ≤ P (A) = 0. Therefore, also
the 3-convex extension of P to 1

4 (B+C+D−1) = 1
2A

should be non-positive. However, by applying axiom
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(A5) as a necessary condition of 3-convexity and noting
that (7) (with λ = −1, X = 1 and B = Ω) ensures
also that P (−1) = −1, we obtain P ( 1

4 (B + C + D −
1)) = P ( 1

2 ( 1
2B+ 1

2C) + 1
2 ( 1

2D− 1
2 )) ≥ 1

2P ( 1
2B+ 1

2C) +
1
2P ( 1

2D− 1
2 ) ≥ 1

4P (B)+ 1
4P (C)+ 1

4P (D)+ 1
4P (−1) ≥

3 · 1
4 · 1

2 − 1
4 = 1

8 > 0, a contradiction.

From what we have just proven, we may conclude that:

a) the given P on the powerset of IP has no 3-convex
extension to L(IP );

b) P (viewed now as 3-coherent on the powerset of
IP ) has no 3-coherent extension on L(IP ) either:
if it had one, this extension would be 3-convex too,
contradicting a).

We may thus conclude that centered 2-convexity and 2-
coherence appear to be the most significant weakenings
of (centered) convexity and coherence.

6 Weak Consistency in a Desirability
Approach

In this section we examine centered 2-convexity and
2-coherence from the viewpoint of desirability. This
is an alternative approach to rationality concepts for
uncertainty measures going back to [17] in the case of
conditional imprecise previsions. It has been recently
applied to a variety of other situations, see e.g. the
discussion in [13] and the results in [14].

Roughly speaking, a set A of gambles is considered.3
It is such that its gambles are regarded as desirable or
acceptable. We may in general be willing to establish
some rationality criteria, requiring that certain gam-
bles do, or do not, belong to A. The basic problem
we shall consider here is: which is the correspondence
between the rationality criteria we adopt and the con-
sistency concepts of centered 2-convexity or alterna-
tively 2-coherence? More specifically, the following
two questions arise:

Q1) Which rationality criteria should be required to
the elements of a set A, so that a conditional
lower prevision P may be obtained from A that
is 2-coherent (alternatively, 2-convex)?

Q2) Conversely, given a 2-coherent (alternatively, 2-
convex) P , does it determine a set A′ with certain
rationality properties?

In the case that P is coherent, the answer to Q1) and
Q2) was given by Williams in [17]. Our approach to

3 As will appear later, A is included into some fixed linear
space of gambles.

solving Q1) and Q2) was largely influenced by his work.
Preliminarily, some notation must be introduced.
Definition 6. Let X be a linear space of gambles,
B ⊂ X a set of (indicators of) events, B∅ = B − {∅}.
We suppose Ω ∈ B and BX ∈ X , ∀B ∈ B, ∀X ∈ X .4
Define then

X� = {X ∈ X : inf X ≥ 0},
X� = {X ∈ X : supX ≤ 0}, (12)

and, ∀B ∈ B,

R(B) = {X ∈ X : BX = X},
R(B)� = {X ∈ R(B) : inf{X|B} > 0},
R(B)≺ = {X ∈ R(B) : sup{X|B} < 0}.

(13)

If S and T are subsets of X , their Minkowski sum is

S + T = {X + Y : X ∈ S, Y ∈ T }.

We shall use similar compact notation later. For in-
stance, λS + µT ⊆ U , ∀λ, µ ≥ 0, means: ∀X ∈ S,
∀Y ∈ T , ∀λ, µ ≥ 0, λX + µY ∈ U .

The following proposition answers question Q1) com-
pletely for 2-coherence:
Proposition 10. Let A ⊆ X be such that

a) λA+R(B)� ⊆ A, ∀λ ≥ 0, ∀B ∈ B;

b) R(B)≺ ∩ A = ∅, ∀B ∈ B.

c) (R(B1) ∩ A) + (R(B2) ∩ A) ⊆
R(B1 ∨B2) \ R(B1 ∨B2)≺,∀B1, B2 ∈ B.

Define, ∀X|B ∈ DLIN ,

P (X|B) = sup{x : B(X − x) ∈ A}. (14)

Then, P is 2-coherent on DLIN .

Unlike the case of coherent conditional lower previsions
examined in [17, Section 3.1], A does not need to be
a cone in Proposition 10: given X,Y ∈ A, λ ≥ 0,
neither X + Y nor λX are guaranteed to belong to A.
Actually, condition a) represents a weakening of the
cone axioms: if X ∈ A, Y ∈ R(B)� and λ ≥ 0, then
λX + Y ∈ A. This implies also R(B)� ⊆ A ∀B ∈ B,
a condition that, like also b), is required for coherence
as well (see (C1’), (C2’) in [17, Section 3.1]).

The interpretation of b) is that of an avoiding partial
loss condition: we can expect no gain from owning
a gamble in R(B)≺, when B is true, therefore such
gambles cannot be included into A.

4 Note that if X ∈ X and B ∈ B∅, X|B ∈ DLIN in the
notation of the preceding sections.
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As for c), writing it in an extended form, it tells us that:
if X1, X2 ∈ A, B1X1 = X1, B2X2 = X2, then (B1 ∨
B2)(X1+X2) = X1+X2 and sup(X1+X2|B1∨B2) ≥ 0.
Note that if X1 ∈ R(B1) and X2 ∈ R(B2), it always
holds that X1 +X2 ∈ R(B1 ∨B2), without having to
impose it by means of axiom c). In fact, we have that
(B1 ∨ B2)(X1 + X2) = (B1 ∨ B2)(B1X1 + B2X2) =
(B1 ∨B2)B1X1 + (B1 ∨B2)B2X2 = B1X1 +B2X2 =
X1 +X2, so that X1 +X2 ∈ R(B1 ∨B2).

Therefore, the essential condition in axiom c) is that
if X1, X2 are desirable (belonging to A), this does
not imply that X1 + X2 ∈ A (which is required for
coherence in [17, 18]), but only that X1 + X2 is not
necessarily discarded by resorting to b). To illustrate
this concept, let for instance B1 = B2 = Ω in c),
so that R(B1) = R(B2) = R(B1 ∨ B2) = R(Ω) = X .
Then, c) implies X1 +X2 /∈ R(Ω)≺, making impossible
to apply b) in order to discard X1 +X2 from A.
As for question Q2), an answer is given by the following
proposition, when P is 2-coherent.
Proposition 11. Let P : DLIN → R be 2-coherent.
Define

A′ = {λB(X − x) + Y : X|B ∈ DLIN ,
x < P (X|B), Y ∈ X�, λ ≥ 0}. (15)

Then the set A′ is such that:

a’) aA′ + X� ⊆ A′, ∀a ≥ 0;

b’) X� ∩ A′ = {0};

c’) (A′ +A′) \ {0} ⊆ X \ X�;

d’) P (X|B) = sup{x : B(X − x) ∈ A′}, ∀X|B ∈
DLIN .

Proposition 11 states the existence of a set of desirable
gambles A′, in accordance with a given 2-coherent
conditional lower prevision P and satisfying the ratio-
nality criteria a’), b’), c’). Comparing a’), b’) with a),
b) in Proposition 10, a clear similarity comes evident:
essentially, the sets R(B)�, R(B)≺, B ∈ B, have been
replaced with X�, X� respectively. As a consequence,
note that 0 ∈ A′.
The interpretation of c’) is similar to c) in Proposi-
tion 10. It tells that: if X1, X2 ∈ A′, X1 + X2 6= 0,
then sup(X1 +X2) > 0. Again, coherence would allow
the stronger implication X1, X2 ∈ A′ → X1 +X2 ∈ A′,
while 2-coherence only ensures that X1 +X2 does not
belong to the (near) rejection set X�.
Actually, a’), b’) c’) prove to be stronger than a), b), c).
This means that any 2-coherent conditional prevision
can be represented through a set of desirable gambles
A′ satisfying the necessary axioms a’), b’), c’), but

also that, at the same time, A′ satisfies the weaker
axioms a), b), c) in Proposition 10.

A comparison between (3) in Definition 3 and (10) in
Definition 5 intuitively suggests that we can get an
answer to Q1) for 2-convexity from a reduced form
of Proposition 10, with λ = 1. More precisely, the
following proposition holds:
Proposition 12. Let A ⊆ X be such that

a) A+R(B)� ⊆ A, ∀B ∈ B;

b) R(B)≺ ∩ A = ∅, ∀B ∈ B.

Define, ∀X|B ∈ DLIN ,

P (X|B) = sup{x : B(X − x) ∈ A}. (16)

Then, P is 2-convex on DLIN . Moreover, P is centered
iff R(B)� ⊆ A ∀B ∈ B.

An analogously reduced form of Proposition 11 allows
us to answer question Q2) for 2-convexity.
Proposition 13. Let P : DLIN → R be 2-convex.
Define

A′ = {B(X − x) + Y : X|B ∈ DLIN ,
x < P (X|B), Y ∈ X�}. (17)

Then the set A′ is such that:

a) A′ + X� ⊆ A′;

b) X� ∩ A′ = ∅ iff P (0|B) ≤ 0, ∀B ∈ B∅;

c) P (X|B) = sup{x : B(X − x) ∈ A′}, ∀X|B ∈
DLIN .

Further, P is centered iff R(B)� ⊆ A′ ∀B ∈ B.

Comparing Propositions 10 and 11 with, respectively,
Propositions 12 and 13, we note that, in addition to
the constraint λ = 1, 2-convexity requires no condition
like c) and c’) in Propositions 10 and 11 respectively.
Referring, for instance, to c’), this means that, given
X,Y ∈ A′ with X +Y 6= 0, 2-convexity does not guar-
antee sup(X + Y ) > 0: summing up two individually
desirable gambles could therefore give rise to a par-
tial or even to a sure loss. Moreover, a non-centered
2-convex P suffers from a more serious shortcoming:
if R(B)� ⊆ A′ does not necessarily hold, then a non-
negative gamble X = BX (X 6= 0) exists, that is
considered non-desirable. The main drawbacks of 2-
convexity relative to 2-coherence are therefore clearly
pointed out by a comparison through desirability ax-
ioms.
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7 Weakly Consistent Uncertainty
Models

As mentioned in the Introduction, a motivation for
studying the loose forms of consistency introduced
in this paper is their capability of encompassing or
extending uncertainty models already investigated in
the literature. Even though these models may depart
also considerably from coherence and convexity, they
can nevertheless be accommodated into a unifying
betting scheme, ranging from 2-convex to coherent
lower previsions.

Focusing on 2-convexity, we first recall a few definitions
and some results concerning unconditional 2-convex
lower previsions.
Definition 7. Given a finite partition IP , and denot-
ing with 2IP its powerset, a mapping c : 2IP → [0, 1] is
a (normalised) capacity whenever c(∅) = 0, c(Ω) = 1
(normalisation) and ∀A1, A2 ∈ 2IP such that A1 ⇒ A2,
c(A1) ≤ c(A2) (1-monotonicity).
Definition 8. Given a linear space L of random vari-
ables, a niveloid [2, 5] is a functional N : L → R =
R ∪ {−∞,+∞} which is translation invariant and
monotone, i.e. such that

N(X + µ) = N(X) + µ,∀X ∈ L,∀µ ∈ R;
X ≥ Y implies N(X) ≥ N(Y ),∀X,Y ∈ L. (18)

As well-known, capacities are uncertainty mea-
sures with really minimal quantitative requirements.
Niveloids can be viewed as a generalisation of theirs
to linear spaces of random variables which preserves
their minimality properties. Strictly speaking, this is
true for centered niveloids, i.e. such that N(0) = 0. In
fact, the centering condition N(0) = 0 does not ensue
from the definition of niveloid. Note also that niveloids
apply to random variables which may be unbounded
too.

It has been proven in [1, Section 4.1]5 that:
Proposition 14. a) Let P be defined on 2IP . Then

P is a centered 2-convex lower prevision if and
only if it is a capacity.

b) Let P be defined on a linear space L of bounded
random variables (gambles). Then P is a 2-convex
lower prevision if and only if it is a (finite-valued)
niveloid.

Hence, an unconditional 2-convex lower prevision is
equivalent to a capacity or a niveloid, on structured
sets (2IP or L respectively). On non-structured sets,ù
it extends these concepts.

5 See Footnote 2.

2-convex conditional lower previsions are natural can-
didates to define conditional capacities and niveloids
on arbitrary sets of, respectively, conditional events or
gambles. To the best of our knowledge, such condi-
tional versions have not been considered yet in this gen-
eral conditional environment, but rather in more spe-
cific cases. For instance, [3] focuses on updating rules
for ‘convex’ capacities, which means for 2-monotone
lower probabilities, while considering a single condi-
tioning event.

Thus 2-convex previsions may provide an appropri-
ate framework for such extensions, guaranteeing some
minimal properties like the existence of a 2-convex
natural extension (when being centered). Take for
instance centered 2-convex conditional lower probabil-
ities. They satisfy the properties one would require to
a conditional capacity: P (0|B) = 0, P (Ω|B) = 1 (this
follows from Proposition 7, a)), and A|B ≤GN C|D im-
plies P (A|B) ≤ P (C|D) (Proposition 7, c)). Similarly,
centered 2-convex lower previsions ensure generalisa-
tions of properties (18) (see especially Proposition 2
and Remark 1 for the first property, Proposition 7, c)
for the second).

8 Conclusions

N -convex and n-coherent conditional lower previsions
broaden the spectrum of uncertainty measures that
can be accommodated into a behavioural approach
to imprecision, including, for instance, conditional
extensions of capacities and niveloids when n = 2.
This choice for n is the most neatly distinguished from
coherence, the other extreme in the spectrum, and
that retaining more interesting properties. Among
these the GBR must still hold. Centered 2-convex
and 2-coherent previsions also have a clear meaning
in terms of desirability. Further work is necessary
to investigate additional properties, like the possible
existence of envelope theorems, or properties of already
defined notions. In particular, we conjecture that the 2-
convex natural extension may simplify computing the
convex natural extension. As a further generalisation
of this work, the consistency notions defined here could
be extended to the case of unbounded conditional
random variables. This has been done in [15] for
coherent conditional lower previsions, while, to the best
of our knowledge, a similar investigation for convex
conditional previsions is still missing.
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