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Abstract

We prove a game-theoretic version of the strong law of
large numbers for submartingale differences, and use this
to derive a pointwise ergodic theorem for discrete-time
Markov chains with finite state sets, when the transition
probabilities are imprecise, in the sense that they are only
known to belong to some convex closed set of probability
measures.
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1 Introduction

In Ref. ,|de Cooman and Hermans|made a first attempt
at laying the foundations for a theory of discrete-event (and
discrete-time) stochastic processes that are governed by sets
of, rather than single, probability measures. They showed
how this could be done by connectings the-
ory of coherent lower previsions with ideas and results from
[Shafer and Vovk|s [2001] game-theoretic approach to prob-
ability theory. In later papers, de Cooman et al. |5] applied
these ideas to finite-state discrete-time Markov chains, in-
spired by the work of Hartfiel [6]. They showed how to
do efficient inferences in, and proved a Perron—-Frobenius-
like theorem for, so-called imprecise Markov chains, which
are finite-state discrete-time Markov chains whose trans-
ition probabilities are imprecise, in the sense that they are
only known to belong to a convex closed set of probability
measures—typically due to partial assessments involving
probabilistic inequalities. This work was later refined and
extended by Hermans and de Cooman and Skulj and
Hable [15].

The Perron—Frobenius-like theorems in these papers give
equivalent necessary and sufficient conditions for the un-
certainty model—a set of probabilities—about the state X,
to converge, for n — oo, to an uncertainty model that is
independent of the uncertainty model for the initial state
X.

In Markov chains with ‘precise’ transition probabilities, this
convergence behaviour is sufficient for a pointwise ergodic
theorem to hold, namely that:

lim 1 Y f(Xi) = E-.(f) almost surely

for all real functions f on the finite state set 2, where
E. is the limit expectation operator that the expectation
operators E, for the state X,, at time n converge to pointwise,
independently of the initial model E; for X;, according to
the classical Perron—-Frobenius Theorem

The aim of the present paper is to extend this result to a
version for imprecise Markov chains; see Theorem

How do we mean to go about this? In Section we explain
what we mean by imprecise probability models: we extend
the notion of an expectation operator to so-called lower (and
upper) expectation operators, and explain how these can
be associated with (convex and closed) sets of expectation
operators.

In Section we explain how these generalised uncertainty
models can be combined with event trees to form so-called
imprecise probability trees, to produce a simple theory of
discrete-time stochastic processes. We show in particular
how to combine local uncertainty models associated with
the nodes in the tree into global uncertainty models (global
conditional lower expectations) about the paths in the tree,
and how this procedure is related to sub- and supermartin-
gales. We also indicate how it extends and subsumes the
(precise-)probabilistic approach.

In Sectionwe prove a very general strong law of large
numbers for submartingale differences in our imprecise
probability trees. Our pointwise ergodic theorem will turn
out to be a consequence of this in the particular context of
imprecise Markov chains. We briefly explain what impre-
cise Markov chains are in Section how they are special

! Actually, much more general results can be proved, for functions f
that do not depend on a single state only, but on the entire sequence of
states; see for instance Ref. |8] Chapter 20]. In this paper, we will focus
on the simpler version.
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cases of imprecise probability trees, how to do efficient
inference for them, and how to define Perron—Frobenius-
like behaviour. We also explore the influence of time shifts
on the global (conditional) lower expectations, and discuss
stationarity and its relation with Perron—Frobenius-like be-
haviour.

In Section@we show that there is an interesting identity
between the time averages that appear in our strong law of
large numbers, and the ones that appear in the pointwise
ergodic theorem. The discussion in Sectionﬁrst focusses
on a number of terms in this identity, and investigates the
convergence of these terms for Perron—Frobenius-like im-
precise Markov chains. This allows us to use the identity to
prove our version of the pointwise ergodic theorem, whose
significance we discuss briefly in Section

2 Basic Notions from Imprecise
Probabilities

Let us begin with a brief sketch of a few basic definitions
and results about imprecise probabilities. For more details,

we refer to Walley:s seminal book, as well as more
recent textbooks )

Suppose a subject is uncertain about the value that a vari-
able Y assumes in a non-empty set of possible values . He
is therefore also uncertain about the value f(Y) a so-called
gamble—a bounded real-valued function—f: % — R on
the set ¢ assumes in R. We will also call such an f a
gamble on Y when we want to make explicit what variable
Y the gamble f is intended to depend on. The subject’s
uncertainty is modelled by a lower expectatioE , which
is a real functional defined on the set 4 (%) of all gambles
on the set %, satisfying the following basic so-called co-
herence axioms:

LEl. E(f) > inff forall f € 4(¥);
LE2. E(f+g) 2 E(f)+E(g) forall f,g € 4(¥);
LE3. E(Af) =AE(f) forall f € 4(#') and real A > 0.

One—but by no means the onlway to interpret E(f)
is as a lower bound on the expectation E( f) of the gamble
f(Y). The corresponding upper bounds are given by
the conjugate upper expectation E, defined by E(f) :=
—E(—f) forall f € 9(%). It follows from the coherence
axioms[LE1}fLE3]that

LE4. inff <E(f) <E(f) <supf forall fe ¥4 (¥);
and

LES. E(f) <E(g) and E(f) <E(g) forall f,g € 9(¥)
with f < g;

2In the literature [I6][T][13], other names, such as coherent lower
expectation, or coherent lower prevision, have also been given to this
concept.

3See Refs. for other interpretations.
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LE6. E(f+p)=E(f)+pnand E(f+p) = E(f) + u for
all f €9 (#) and real u.

Lower and upper expectations will be the basic uncertainty
models we consider in this paper.

The indicator 14 of an event A—a subset of % —is the
gamble on Y that assumes the value 1 on A and 0 outside
A. It allows us to introduce the lower and upper probab-
ilities of A as P(A) := E(I4) and P(A) := E(I4), respect-
ively. They can be seen as lower and upper bounds on the
probability P(A) of A, and satisfy the conjugacy relation
P(A) =1—-P(#Z\A).

When the lower bound E coincides with the upper bound E,
the resulting functional E := E = E satisfies the defining
axioms of an expectation:

El. E(f) >inff forall f € 4(%);
E2. E(f+g)=E(f)+E(g) forall f,g €4 (¥);

E3. E(Af) =AE(f) forall f € 4(%) and real A.

When % is finite, E is trivially the expectation associated
with a (probability) mass function p defined by p(y) =
P({y}) =P({y}) forally € #Z, because it follows from the
expectation axioms that then E(f) = ¥Yca f(v)p(y); see
for instance also the detailed discussion in Ref. {13].

With any lower expectation E, we can always associate the
following convex and closeset of compatible expectation
operators:

M(E) ={E: (Vf€G(P)E(f) <E(f)<E()} (D
and the propertiesthen guarantee that

E(f)=min{E(/): E€ME) 0 o i
E(f) = max{E(f): E € M(E)}

). @
In this sense, an imprecise probability model E can always
be identified with a closed convex set D(E) of compatible
‘precise’ probability models E.

3 Discrete-Time Finite-State Imprecise
Stochastic Processes

We consider a discrete-time process as a sequence of vari-
ables, henceforth called states, X1, X», ..., X,, ..., where
each state X is assumed to take values in a non-empty finite
set Zx.

4The ‘closedness’ is associated with the weak* topology of pointwise
convergence Section 3.6].
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3.1 Event Trees, Situations, Paths and Cuts

We will use, for any natural k < ¢, the notation Xj., for the
tuple (X, ...,Xy), which can be seen as a variable assumed
to take values in the product set 2., == xf:k%. We de-
note the set of all natural numbers (without 0) by N, and let
Ny =NU {0}

We call any x;., € 21., for n € Ny a situation and we de-
note the set of all situations by Q. So any situation is a
finite string of possible values for the consecutive states,
and if we denote the empty string by [, then in particular,
Z1.0 ={0O}. Ois called the initial situation. We also use
the generic notations s, ¢ or u for situations.

An infinite sequence of state values is called a path, and we
denote the set of all paths—also called the sample space—
by Q. Hence

Q%= |J Zimand Q= x| 2.

neNy

We will denote generic paths by @. For any path @ € Q,
the initial sequence that consists of its first n elements is
a situation in Z7., that is denoted by @". Its n-th element
belongs to 2, and is denoted by @,. As a convention, we
let its O-th element be the initial situation ©° = wy = OJ.
The possible realisations @ of a process can be represented
graphically as paths in a so-called event tree, where each
node is a situation; see Figure

We write that s C ¢, and say that s precedes t or that ¢ follows
s, when every path that goes through ¢ also goes through
s. The binary relation C is a partial order, and we write
s C t whenever s C ¢ but not s = t. We say that s and ¢ are
incomparable when neither s C ¢ nor ¢ C s.

A (partial) cut U is a collection of mutually incomparable
situations, and represents a stopping time. For any two cuts
U and V, we define the following sets of situations:

[UV]={s€Q’: (GueU)(FveV)uCsCv}
U,V)={s€Q%: Buel)(FveV)uLTscv}
(U, V] ={s€Q’: (GueU)(FveV)uc sCv}
(U,V)={s€Q’: (GueU)(FveVuc scv}.

When a cut U consists of a single element u, then we will
identify U = {u} and u. This slight abuse of notation will
for instance allow us to write [u,v] = {s € Q¥: u C s C v}
and also (U,v) = {s € Q%: (ue U)u s = v}. We also
write U C V if (Vv € V)(3u € U)u C v. Observe that in that
case UNV = 0. In particular, s 1 U when there is some
u € U such that s J u, or in other words if [U,s) # 0.

A process F is a map defined on Q. A real process is a
real-valued process: it associates a real number .7 (x}.,) €
R with any situation x1.,. It is called bounded below if there
is some real B such that .7 (s) > B for all situations s € Q.

Figure 1: The (initial part of the) event tree for a process
whose states can assume two values, a and b, and can
change at time instants n = 1,2,3,... Each node in the
tree corresponds to a situation. Also depicted are the re-
spective sets of situations (cuts) Z7.1, 2.2 and 27.3 where
the states at times 1, 2 and 3 are revealed.

A gamble process 9 is a process that associates with any
situation x;., a gamble 2 (x|.,) € 4(Zn+1) on X,11. It is
called uniformly bounded if there is some real B such that
|2(s)| < B for all situations s € Q. With any real process
7, we can always associate a gamble process A.7, called
the process difference. For every situation x;.,, the gamble
AF (x1:) € G(Zns1) is defined by’|

Ay(xl:n)(er-l) = y(xl:nﬁ-l)_f(xl:n)
for all x,11 € Zp+1.

We will denote this more succinctly by AF(x,) =
F (x1:n+) — F (x1:), Where the ‘-’ represents the generic
value of the next state X1 1.

Conversely, with a gamble process &, we can associate a
real process .# 7, defined by

n—1

I (x1a) =Y, D(x14) (1)

k=0
for all n € Ny and x1.,, € Z1.n-

Clearly, A¥? = 9 and F = .7 (0) + 927

3Our assumption that .2;,,  is finite is crucial here because it guaran-
tees that A.Z (x1.,) is bounded, which in turn implies that it is indeed a
gamble.
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Also, with any real process .# we can associate the path-
averaged process (.7 ), which is the real process defined
by:

0 ifn=0
F(x1p) ifn>0

(F)(x1n) = {

1
n

for all n € Ny and x;.,, € Z71.p.

3.2 Imprecise Probability Trees, Submartingales and
Supermartingales

The standard way to turn an event tree into a probability tree
is to attach to each of its nodes, or situations x;.,, a local
probability model Q(-|x;,) for what will happen immedi-
ately afterwards, i.e. for the value that the next state X,
will assume in 2}, . This local model Q(-|x;.,) is then an
expectation operator on the set 4 (%) of all gambles
g(X,+1) on the next state X,,;1, conditional on observing
Xin = X1

In a completely similar way, we can turn an event tree into
an imprecise probability tree by attaching to each of its
situations x1., a local imprecise probability model Q(-|x1.,)
for what will happen immediately afterwards, i.e. for the
value that the next state X,,. | will assume in 2,1 . This
local model Q(-|x;.,) is then a lower expectation operator
on the set ¥(.%2,1) of all gambles g(X,) on the next
state X,+1, conditional on observing Xi., = x1.,. This is
represented graphically in Figure

(b,b,b)
(b’b) Q("bﬂb)
(b,b,a)

E

b ) Q(Ib)
(b,a,b)
b,a)
(b,a,a)

(b,a) | Q(

(a,b,b)
(avb) Q(-‘a,b)
(a,b,a)

(a,a,b)

O(-la,a)

—
5
2
=
©
~

(a,a,a)

Figure 2: The (initial part of the) imprecise probability tree
for a process whose states can assume two values, a and b,
and can change at time instants n = 1,2,3,...

In a given imprecise probability tree, a submartingale A

is a real process such that Q(A.# (x1.,)|x1.,) > O for all
n € Ny and x1.,, € Z1.,: all submartingale differences have
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non-negative lower expectation. A real process .Z is a
supermartingale if —.# is a submartingale, meaning that
O(AAM (x1.)|x1:n) <0 for all n € Ny and x1., € 27.: all
supermartingale differences have non-positive upper expect-
ation. We denote the set of all submartingales for a given
imprecise probability tree by M—whether a real process
is a submartingale depends of course on the local uncer-
tainty models. Similarly, the set Ml := —M is the set of all
supermartingales.

In the present context of probability trees, we will also
call variable any function defined on the so-called sample
space—the set Q of all paths. When this variable is real-
valued and bounded, we will also call it a gamble on Q.
When it is extended real-valued, meaning that it assumes
values in the set R* := RU {—o0, 400}, we call in an exten-
ded real variable. An event A in this context is a subset of
Q, and its indicator [4 is a gamble on Q assuming the value
1 on A and O elsewhere. With any situation xi.,, we can
associated the so-called exact event I'(xy.,) that X1, = X1.n,
which is the set of all paths @ € Q that go through x1.,:

T(xpy) ={0e€Q: 0" =x14}.

For a given n € Ny, we call a variable & n-measurable if it
is constant on the exact events I'(x;.,) for all xy.,, € 21,
or in other words, if it only depends on the values of the
first n states X.,. We then use the obvious notation & (x;.,)
for its constant value & () on all paths ® in T'(xj.,).

With a real process .%, we can associate in par-
ticular the following extended real variables
liminf.# and limsup.#, defined for all w € Q by
liminf.# (@) := liminf,..# (®") and limsup.# (@) =
limsup,_,,, .7 (®"). If liminf.7 (@) = limsup.%# (®) on
some path @, then we also denote the common value there
by im Z# (®) = lim, e % (@").

3.3 Going from Local to Global Belief Models

So far, we have associated local uncertainty models with an
imprecise probability tree. These represent, in any situation
X1:n, beliefs about what will happen immediately afterwards,
or in other words about the step from x;., to x1., X+ 1.

We now want to turn these local models into global ones:
uncertainty models about which entire path @ is taken in the
event tree, rather than which local steps are taken from one
situation to the next. We use the following expression for
the global lower expectation conditional on the situation s:

E(f|s) =sup{ A (s): A € M,limsup.# < fonI(s)},

3)
and for the conjugate global upper expectation conditional
on the situation s:

E(fls) = inf{# (s): # € M,liminf.# > f onT(s)},
“4)



A pointwise ergodic theorem for imprecise Markov chains

where f is any extented real variable on Q, and s € Q© any
situation. We use the simplified notations E = E(-|0J) and
E = E(-|0) for the (unconditional) global models, associ-
ated with the initial situation L.

Our reasons for using these so-called Shafer—Vovk-Ville
formulag®|are fourfold.

First of all, they are formally very closely related to the ex-
pressions for lower and upper prices in Shafer and Vovk’s
game-theoretic approach to probabilities, see for instance
Refs. [11] Chapter 8.3], [12] Section 2] and [14] Section 6.3].
This allows us to import and adapt, with the necessary care,
quite a number of powerful convergence results from that
theory, as we shall see in Section Moreover, Shafer and
Vovk (see for instance Refs. Proposition 8.8] and
Section 6.3]) have shown that they—or rather their restric-
tions to gambles—satisfy our defining properties for lower
and upper expectations in Section which is why we are
calling them lower and upper expectations.

Secondly, we gather from Propositionand Corollary
that the expressions (3) and (4) coincide for n-measurable
gambles on Q with the formulae derived in Ref. [2] as the
most conservativ global lower and upper expectations
that extend the local models—see Corollary

Proposition 1. For any situation x1., € Q% and any n-
measurable extended real variable f, with n,m € Ny such
thatn > m:

E(f|x1um) = sup{ A (x1.): A €M and

(YXmi1:n € Zmirn) A (X1:0) < f(X1:0) }
E(f|x1m) = inf{ A (x1.): A € M and

(YXmt1:n € Ly tin) A (X1:0) > f(X1:0) }-

Corollary 2. For any situation xi., € Q° and any n-
measurable extended real variable f, with n,m € Ny such
that n > m:

E(flx1:m) = sup{E(g|x1:m): g € G (Z1:n) and

(YXmi1:n € Zmi1:0)8(X1:n) < f(x1:0)}
E(f|x1.m) = inf{E(g|x1:m): g € 4(Z1.0) and

(YXmi1:n € Zny1:0)8(X1:n) > f(X1:0) }-

Corollary 3. Consider n € Ny and x1.,, € Q°. Then for
any (n+ 1)-measurable gamble g on Q: E(g|xin) =

SWe give this name to these formulae because Glenn Shafer and Vladi-
mir Vovk first suggested them, based on the ideas of Jean Ville; see the
discussion of Ville’s Theorem in Ref. Appendix 8.5].

7By more conservative, we mean associated with a larger set of precise
models, so pointwise smaller for lower expectations, and pointwise larger
for upper expectations.

8We have also shown in recent, still unpublished work that in a more
general context—where X takes values in a possibly infinite set Z;—for
arbitrary gambles on Q they are the most conservative global models
that extend the local ones and satisfy additional conglomerability and
continuity properties.

0(g(x1n ) |x1:0) and E(g|x1:n) = O(g(x1:*) |X1:0). Also, for

any (n+ 1)-measurable extended real variable f:

E(flx1:n) = sup{Q(h|x1.n): h€ G(Z) and h < f(x1.n-)}
E(f|x1:n) = inf{Q(h|x1): h € G(Z) and h > f(x1:°)}.

Thirdly, it is (essentially) the expressions in Proposition
that we have used in Refs. for our studies of
imprecise Markov chains, which we report in Section The
main result of the present paper, Theoremin Section
will build on the ergodicity results proved in those papers.

Fourthly, it was also shown in Ref. [2] that the expressions
in Propositionhave an interesting interpretation in terms
of (precise) probability trees. Indeed, we can associate with
an imprecise probability tree a (usually infinite) collection
of (so-called compatible) precise probability trees with the
same event tree, by associating with each situation s in the
event tree some arbitrarily chosen precise local expectation
O(:|s) that belongs to the convex closed set M(Q(:|s)) of
expectations that are compatible with the local lower ex-
pectation Q(-|s). For any n-measurable gamble f on Q, the
global precise expectations in the compatible precise prob-
ability trees will then range over a closed interval whose
lower and upper bounds are given by the expressions in
Proposition

And finally, Shafer and Vovk have shown Chapter 8]
that when the local models are precise probability mod-
els, these formulae and lead to global models that
coincide with the ones found in measure-theoretic prob-
ability theory. This implies that the results we shall prove
below, subsume, as special cases, the classical results of
measure-theoretic probability theory.

4 A Strong Law of Large Numbers for
Submartingale Differences

We now discuss and prove two powerful convergence res-
ults for the processes we have defined in the previous sec-
tion.

We call an event A null if P(A) = E(I4) = 0, and strictly
null if there is some test supermartingale .7 that converges
to +oo on A, meaning that:

lim.7 (@) = +oo forall ® € A.

Here, a test supermartingale is a supermartingale with
Z (O) = 1 that is moreover non-negative in the sense that
T (s5) > 0 for all situations s € Q°. Any strictly null event
is null, but null events need not be strictly null .

Proposition 4. Any strictly null event is null, but not vice
versa,

9For the null and strictly null events to be the same, it is necessary to
consider supermartingales that may assume extended real values, as is
done in Refs. [14][12]. We see no need for doing so here.
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In this paper, we shall use the ‘strict’ approach, and prove
that events are strictly null—and therefore also null—by
actually showing that there is a test supermartingale that
converges to oo there.

As usual, an inequality or equality between two variables
is said to hold (strictly) almost surely when the event that
it does not hold is (strictly) null. Shafer and Vovk
have proved the following interesting result, which we shall
have occasion to use a few times further on. It can be
seen as a generalisation of Doob’s supermartingale conver-
gence theorem Sections 11.5-7] to imprecise probabil-
ity trees.

Theorem 5 ({14] Section 6.5] Supermartingale conver-
gence theorem). Let .# be a supermartingale that is
bounded below. Then .# converges strictly almost surely
to a real variable.

We now turn to a very general version of the strong law of
large numbers. Weak (as well as less general) versions of
this law were proven by one of us in Refs. [3][2]. It is this
law that will, in Section be used to derive our version of
the pointwise ergodic theorem. Its proof is based on a tried-
and-tested method for constructing test supermartingales
that goes back to an idea in Ref. Lemma 3.3].

Theorem 6 (Strong law of large numbers for submartingale
differences). Let .# be a submartingale such that A is
uniformly bounded. Then iminf(.#) > O strictly almost
surely.

S Imprecise Markov Chains

We are now ready to apply what we have learned in the
previous sections to the special case of (time-homogeneous)
imprecise Markov chains. These are imprecise probability
trees where (i) all states X; assume values in the same
finite set Z; = 2, called the state space, and (ii) all local
uncertainty models satisfy the so-called Markov condition:

O(-|x1:1) = Q(+|x,) for all situations x1., € QO, 5)

meaning that these local models only depend on the last
observed state; see Fi gure

We refer to Refs. for detailed studies of the be-
haviour of these processes. We restrict ourselves here to
a summary of the existing material that is relevant for the
present discussion of ergodicity.

From now on, we start using a convenient notational device
often encountered in texts on stochastic processes: when we
want to indicate which states a process or variable depends
on, we indicate them explicitly in the notation. Thus, we use
for instance the notation .# (Xj.,) to indicate the ‘uncertain’
value of the process .7 after the first n time steps, and write
f(X,) for a gamble that only depends on the value of the
n-th state.
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(b,b,D)
(b,D) Q(-[b)
(b,b,a)
b ) Q(Ib)
(b,a,b)
(b,a) O(|a)
(b,a,a)
(o)
(a,b,b)
(a,D) Q(-[b)
(a,b,a)
a ) Q(la)
(a,a,b)
(a,a) O(|a)
(a,a,a)

Figure 3: The (initial part of the) imprecise probability
tree for an imprecise Markov process whose states can
assume two values, a and b, and can change at time instants
n=1,2,3,...

We can use the local uncertainty models to introduce a
(generally non-linear) transformation T of the set 4 (2)
of all gambles on the state space 2 . The so-called lower
transition operator of the imprecise Markov chain is given
by:

T:9(2)=9(2): f=1f,

where T f is the gamble on 2~ defined by
Tf(x):=Q(f|x)forallxe 2.

The conjugate upper transition operator T is defined by
Tf=—-T(—f)forall f € 4(Z). In particular, TT(x)
is the lower probability to go from state value x to state
value y in one time step, and T]I{y}(x) the conjugate upper
probability. This seems to suggest that the lower/upper
transition operators T are generalisations of the concept
of a Markov transition matrix for ordinary Markov chains.
This is confirmed by the following result, proved in Ref.
Corollary 3.3] as a special case of the so-called Law of
Iterated (Lower) Expectations [2|[11]. If, for any n € N, we
denote by E,, (f) the value of the (global) lower expectation
E(f(X,)) of a gamble f(X,) on the state X, at time n, then

E,(f)=E{(T"'f), with T" ' f:=TT...Tf,
N——

n—1 times

and where, of course, E; = Q(:|00) is the marginal local
model for the state X; at time 1. In a similar vein, for any
n € No, T"I[yy (x) is the lower probability to go from state
value x to state value y in n time steps, and T"Iy,y(x) the
conjugate upper probability.
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We can formally call lower transition operator any trans-
formation T of ¢(%) such that for any x € 2, the real
functional T, on ¥4(%), defined by T,(f) := T f(x) for
all f € 9(2),is a lower expectation—satisfies the coher-
ence axioms The composition of any two lower
transition operators is again a lower transition operator. See
Ref. |5] for more details on the definition and properties of
such lower transition operators, and Ref. for a mathem-
atical discussion of the general role of these operators in
imprecise probabilities.

We call an imprecise Markov chain with lower transition
operator T Perron—Frobenius-like if for all f € 4 (Z), the
sequence of gambles T" f converges pointwise to a constant
real number, which we shall then denote by Epg(f).

The following result was proved in Ref. [5] Theorem 5.1],
together with a simple sufficient (and quite weak) condition
on T for a Markov chain to be Perron—-Frobenius-like: there
is some n € N such that minT"]I{y} >0forallye 2, orin
other words, all state values can be reached from any state
value with positive upper probability in (precisely) n time
steps. More involved necessary and sufficient conditions
were given later in Refs. [7][15]; see also Theorem §(iv)|
further on.

Proposition 7 ([5]). The imprecise Markov chain with
lower transition operator T is Perron—Frobenius-like if
and only if there is some real functional E., on 9 (Z) such
that for any initial model E| and any f € 4 (%), it holds
that E,(f) = E{(T""' f) — E..(f). Moreover, in that case
the functional E, is a lower expectation on 9 (%), called
the stationary lower expectation, it coincides with Epg, and
it is the only lower expectation that is T -invariant in the
sense that E_ oT =E_.

6 An Interesting Equality in Imprecise
Markov Chains

We now prove an interesting equality for imprecise Markov
chains, which will be instrumental in proving our pointwise
ergodic theorem in the next section.

Consider, for any f € 4(Z), the corresponding gain pro-
cess #[f], defined by, for any n € N:

Y f1(Xin) = [f(X1) = E1(f)]

n

+ Y F(X) —Tf (1)), (©)
k=2
the corresponding average gain process (#')[f], defined
by:

<W>[f](xl:n)
OB AT RS W AR wie )| NG

k=2

and the ergodic average process <7 [f], defined by:

(ngE

[f (Xk) = Ex(£)]- ®)

S|

A [fl(X1:n) =

k=1

We can let these processes be 0 in the initial situation [l—
the choice is immaterial. Now observe that, for any n € N

and any f € 4(2):

n—1
; (P)T f1(X1:n)
=0
n—1
= Y [T x0) - Ey (1))
/=0
n—1 n
+% Y [T T (X)), 9
1=0k=2

n—1 n
Y Y [T roa) -1 F(x)]
(=0k=2
n—1 n—1 n
= Zﬂf(Xk)— ) ZTHlf(kal)
(=0k=2 1=0k=2
n—1 n n n—1
=Y Y 1lrx)- Y Y T ()
1=0k=2 (=1k=1
n n—1 ) n—1
- ¥ )+ X (100 + L0
k=2 (=1 k=2
n—1 n—1 n—1
SRR MCTEORS Wi )
k=1 (=1 =2
n n—1 n—1 n—1
=Y X+ YT X)) - Y T ) - Y T f(x)
k=2 =1 k=1 =1
n n n n—1
=Y FX)+ Y T (X)) - Y T (%) — Y. T F(x),
k=1 =1 k=1 =0

and if we substitute this back into Equation @, we find,
after getting rid of the cancelling terms, recalling that
E|(T'f) = E;.\(f), and reorganising a bit, that:

n—1 n
A1) = T T K)o Y T ()
=0 k=1
—1f1”f<Xn>- (10)

This is an important relationship between the ergodic aver-
age and the average gain. We now intend to show that under
certain conditions the remaining terms on the right-hand
side essentially cancel out for large enough 7.
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7 Consequences of the
Perron-Frobenius-like Character

Let us associate with a lower transition operator T the
following (weak) coefficient of ergodicity {15][7]:

Th(y)|= max |Thly,
hedy (2)

where 4 (2) ={h€ 9 (Z): 0 <h <1}, and where for

any h € 9( %), its variation (semi)norm is given by ||h||y ==

max i — min k. If we define the following distance between

two lower expectation operators E and F [15]:

—F(h)|,

T):= Th
p(I) = max max |Th(x)-

d(E,F)= her;ﬁ%lﬁ(h)

then it is not difficult to see [using[LE3}|LE4|and|LE6] that
0 <d(E,F) <1, and that for any f € 4(%):

E(f) —E(N) <d(E.E)[f]lv- (11)

Skulj and Hable have proved the following results,
which will turn out to be crucial to our argument.

Theorem 8 ([15]). Consider lower transition operators S
and T, and two lower expectations E, and E,, on 9(Z).
Then the following statements hold:

(i) 0<p(T) <

(i) p(ST) < p(S)p(T) and therefore p(T") < p(T)"
foralln e N.

(iii) d(E,T,E,T) <d(E,,E,)p(T).

@iv) The lower transition operator T is Perron—Frobenius-
like if and only if there is some r € N such that

p(T") <1

Indeed, they allow us to derive useful bounds for the
various terms on the right-hand side of Equation .
For any non-negative real number a we denote by |a| =
max{n € Ng: n < a} the largest natural number that it still
dominates—its integer part.

Proposition 9. Let T be a Perron—Frobenius-like lower
transition operator, with invariant lower expectation E ..,
and let r be the smallest natural number such that p =
p(T") < 1. Let E, and E,, be any two lower expectations
onY(X). Thenforall f € G(Z), l1,6, € Ny:

{61 fz}J (12)

|E (T f) = Ex(T2f)| < | £y

As a consequence, for all f € 4(Z), £,01,4, € Ny and
k,ki k> € N:

T £(X) = E.(f)] < | fllvp', (13)

|E,(T'f) - f)\ < |IfllvplH, (14)
H

T F(Xe) —Eo(T )] < | fllvpl (15)

T £(Xe,) T“f (Xe,)| < ||f||vplm‘“”' = ()
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Proposition 10. Consider an imprecise Markov chain with
initial—or marginal—model E| and lower transition op-
erator T. Assume that T is Perron—Frobenius-like, with
invariant lower expectation E.,, and let r be the smallest
natural number such that p :== p(T") < 1. Then the follow-
ing statements hold for all f € 4(Z), £ € Ny and n € N:

Q) [T (Xin)| < [ f]lepl )
(i) Timy e 2 X0 T"F(Xe) = E..(f)-
(i) limy oo 2 X7 TOf(X0) = Ena(f)-

(iv) limy, oo 3 Y7 Ex(f) = Eoa(f)

We can now state our main result.

Theorem 11 (Pointwise ergodic theorem). Consider an im-
precise Markov chain with initial—or marginal—model E |
and lower transition operator T. Assume that T is Perron—
Frobenius-like, with invariant lower expectation E.,. Then

forall f € 9(Z):

liminf.oZ[f] > O strictly almost surely,

and consequently,

llmmf Zf Xi) >

n—o0

E..(f) strictly almost surely.

8 Conclusions and Discussion

We have proved a version of the pointwise ergodic theorem
for imprecise Markov chains involving functions of a single
state. It does not seem very difficult to extend this result to
involve functions of a finite number of states, but it is still
a subject of current research whether it can be extended to
gambles that depend on the entire state trajectory, and not
just on a finite number of states.

Our version subsumes the one for (precise) Markov chains,
because there E.,(f) = Ew(f) = Ew(f) and therefore

Ew(f) = Ex(f) > limsup — Zf X;)

n—roo nk

> hmmf Zf Xi)

n—ee

> E.(f) =Ew(f)

strictly almost surely,

implying that %ZZ=1 S (Xy) converges to E(f) (strictly)
almost surely. In our more general case, however, we cannot
generally prove that there is almost sure convergence, and
we retain only almost sure inequalities involving limits
inferior and superior, as is also the case for our strong law
of large numbers for submartingale differences. Indeed,
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that such convergence should not really be expected for
imprecise probability models was already argued by Walley
and Fine [17].

Ergodicity results for Markov chains are quite relevant for
applications in queuing theory, where they are for instance
used to prove Little’s Law , or ASTA (Arrivals See
Time Averages) properties [9]. We believe the discussion
in this paper could be instrumental in deriving similar prop-
erties for queues where the probability models for arrivals
and departures are imprecise.
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