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Abstract
This paper studies the composition operator for credal
sets introduced at the last ISIPTA conference in more
detail. Our main attention is devoted to the relation-
ship between a special type of compositional model,
so-called perfect sequences of credal sets, and those
of (precise) probability distributions, with the goal of
finding the relationship between credal compositional
models and credal networks. We prove that a perfect
sequence of credal sets is a convex hull of perfect se-
quences of extreme points of these credal sets. Finally,
we reveal the relationship among credal networks (in
a general sense), perfect sequences of credal sets and
separately specified credal networks.

Keywords. Credal sets, strong independence, credal
networks, separate specification, compositional mod-
els.

1 Introduction

The most widely used models managing uncertainty
and multidimensionality are, at present, the so-called
probabilistic graphical Markov models. The problem of
multidimensionality is solved in these models with the
help of the concept of conditional independence, which
enables factorisation of a multidimensional probability
distribution into small parts (marginals, conditionals
or just factors). Among them, the most popular are
Bayesian networks. Therefore, it is not very surprising
that analogous models have also been studied in several
theories of imprecise probability [1, 2, 3].

Credal networks represent a generalisation of Bayesian
networks capable of dealing with imprecision. Compo-
sitional models for credal sets, on the other hand, are
intended to be a generalisation of compositional mod-
els for precise probabilities [6, 7, 8]. As the equivalence
between Bayesian networks and precise compositional
models is well known [9], it also seems quite natural
to ask a similar question in this more general case.

Compositional models have also been introduced in
possibility theory [13, 14] (where these models are
parameterised by a continuous t-norm) and a few years
ago in evidence theory [10, 11] as well. In all these
frameworks the original idea is preserved but certain
slight differences between them are present.

Although Bayesian networks and (precise) probabilis-
tic compositional models represent the same class
of distributions, they do not do it in the same way.
Namely, Bayesian networks use conditional distribu-
tions, whereas compositional models consist of uncon-
ditional distributions. Naturally, both types of models
contain the same information but, while some marginal
distributions are explicitly expressed in compositional
models, it may happen that their computation from
the corresponding Bayesian network is rather compu-
tationally expensive.

Furthermore, the research concerning the relationship
between compositional models in evidence theory and
evidential networks [15] revealed an aspect that is
probably even more important. Even though any
evidential network (with a proper conditioning rule and
conditional independence concept) can be expressed
as a compositional model, if we do it in the opposite
way and transform a compositional model into an
evidential network, we may realise that the model is
more imprecise than the original one. This is caused
by the fact that conditioning increases imprecision.

In [16] we introduced a composition operator for credal
sets, but due to the problem of discontinuity it needs
a revision. This task seems to be rather difficult and
has not been satisfactorily solved yet. Therefore, we
decided to postpone its definition for the general case
to the future and now we deal only with the case of
projective credal sets, as this approach is sufficient for
the topic of this paper.

The goal of this paper is to show that the composition
operator for credal sets is worth developing, as compo-
sitional models seem to be a reasonable counterpart of
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credal networks. We prove that the perfect sequence
of credal sets is a convex hull of perfect sequences of
extreme points of these credal sets. We prove that any
separately specified credal network can be expressed
in the form of a perfect sequence of credal sets, and
any perfect sequence of credal sets can be expressed
as a credal network (in a general sense). Finally, we
present an algorithm for transforming a compositional
model to a credal network.

This contribution is organized as follows. In Section 2
we summarise the basic concepts and notation. Def-
inition of the operator of composition is recalled in
Section 3, which is completely devoted to its basic
properties and those of compositional models. Finally,
in Section 4 the relationship between credal networks
and compositional models is studied.

2 Basic Concepts and Notation

In this section we will recall the basic concepts and
notation necessary for understanding the paper.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a
system of variables, each Xi having its values in a
finite set Xi, and XN = X1 ×X2 × . . .×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables on
subspaces of the Cartesian product. Let us note that
XK will denote a group of variables {Xi}i∈K with
values in

XK =×i∈KXi

throughout the paper.

Any group of variables XK can be described by a prob-
ability distribution (sometimes also called probability
function)

P : XK −→ [0, 1],
such that

∑
xK∈XK

P (xK) = 1.

Having two probability distributions P1 and P2 of XK ,
we say that P1 is absolutely continuous with respect
to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition
of the composition operator.

2.2 Credal Sets

A credal setM(XK) describing a group of variables
XK is defined as a closed convex set of probability
measures describing the values of these variables.1

1For K = ∅ let us setM(X∅) ≡ 1.

In order to simplify the expression of operations with
credal sets, it is often considered [12] that a credal set is
the set of probability distributions associated with the
probability measures in it. Under such consideration,
a credal set can be expressed as a convex hull of its
extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set describing XK , i.e., M(XK).
For each L ⊂ K its marginal credal set M(XL) is
obtained by element-wise marginalisation, i.e.,

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P
on XL.

Having two credal setsM1 andM2 describing XK and
XL, respectively (assuming that K, L ⊆ N), we say
that these credal sets are projective if their marginals
describing the common variables coincide, i.e., if

M1(XK∩L) =M2(XK∩L). (2)

Let us note that if K and L are disjoint, then
M1 and M2 are always projective, as M1(X∅) =
M2(X∅) ≡ 1.

Conditional credal sets are obtained from the joint
ones by point-wise conditioning of the extreme points
and subsequent linear combination of the resulting con-
ditional distributions. More formally: LetM(XK∪L)
(K ∩ L = ∅) be a credal set describing (groups of)
variables XK∪L. Then for any xL ∈ XL

M(XK |xL)
= CH{P (XK |xL) : P ∈ ext(M(XK∪L))}, (3)

is a conditional credal set describing XK given
XL = xL.

2.3 Strong Independence

Among numerous definitions of independence for credal
sets [4] we have chosen strong independence, as it
seems to be the most appropriate for multidimensional
models.

We say that (groups of) variables XK and XL (K and
L disjoint) are strongly independent with respect to
M(XK∪L) iff (in terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ ext(M(XK)),
P2 ∈ ext(M(XL))}. (4)

Again, several generalisations of this notion to con-
ditional independence already exist, see, e.g., [12],
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but since the following definition is suggested by the
authors as the most appropriate for the marginal prob-
lem, it seems to be a suitable concept in our case as
well, since the composition operator can also be used
as a tool for solving the marginal problem, as shown
(within the framework of possibility theory), e.g., in
[14].

Given three groups of variables XK , XL and XM

(where K, L, M are mutually disjoint subsets of N
such that K and L are nonempty), we say in a way
analogous2 to [12] that XK and XL are condition-
ally strongly independent given XM under the global
setM(XK∪L∪M ) (we will denote this relationship by
K ⊥⊥ L|M) iff

M(XK∪L∪M )
= CH{(P1 · P2)/P

↓M

1 : P1 ∈ ext(M(XK∪M )),
P2 ∈ ext(M(XL∪M )), P ↓M1 = P ↓M2 } . (5)

This definition is a generalisation of stochastic condi-
tional independence: if M(XK∪L∪M ) is a singleton,
thenM(XK∪M ) andM(XL∪M ) are also (projective)
singletons and the definition is reduced to the defini-
tion of stochastic conditional independence.

3 Compositional Models

In this section we will summarise the achieved results
concerning compositional models for credal sets. Most
of them are presented without proofs; missing proofs
can be found in [16]. The concept of the composi-
tion operator is presented first in a precise probability
framework, as it seems to be useful for better under-
standing to the concept.

3.1 Composition Operator and Its
Properties

Now, let us recall the definition of composition of two
credal sets. Consider two index sets K, L ⊂ N . We
do not put any restrictions on K and L; they may be
but need not be disjoint, and one may be a subset of
the other.

In order to enable the reader to understand this con-
cept, let us first present the definition of composition
for precise probabilities [6]. Let P1 and P2 be two
probability distributions of (groups of) variables XK

and XL; then

(P1 . P2)(XK∪L) = P1(XK) · P2(XL)
P2(XK∩L) , (6)

2Let us note that our definitions somehow differ from those
presented in [12]: the authors there require point-wise satisfac-
tion in (4) and (5), which leads to non-convexity. In [5], this
type of independence is called complete.

whenever P1(XK∩L) � P2((XK∩L); otherwise, it re-
mains undefined.

Let M1 and M2 be credal sets describing XK and
XL, respectively. Our original goal in [16] was to
define a new credal set, denoted byM1 .M2, which
will be describing XK∪L and will contain all of the
information contained inM1 and, as much as possible,
inM2.

The required properties are met by Definition 1 in [16]3.
However, the definition exhibits a kind of discontinuity
and should be reconsidered. Therefore, we will only
deal with the composition of projective credal sets in
this paper.

Definition 1 For two projective credal setsM1 and
M2 describing XK and XL, their composition M1 .
M2 is defined by the following expression:

(M1 .M2)(XK∪L)
= CH{(P1 · P2)/P

↓K∩L

2 : P1 ∈ ext(M1(XK)),
P2 ∈ ext(M2(XL)), P ↓K∩L

1 = P ↓K∩L
2 }.

The following lemma, proven in [16], contains basic
properties possessed by this composition operator.

Lemma 1 For two projective credal setsM1 andM2
describing XK and XL, respectively, the following
properties hold true:

(i) M1 .M2 is a credal set describing XK∪L.

(ii) (M1 .M2)(XK) =M1(XK) and
(M1 .M2)(XL) =M2(XL).

(iii) M1 .M2 =M2 .M1.

As the operator is, at present, defined only for projec-
tive sets, it is commutative, as suggested by (iii) of
this lemma. Furthermore, it follows from (ii) that the
operator keeps both marginals. Both of these proper-
ties are typical in other settings exactly for the case
of projective marginals.

Despite these facts, it remains non-associative (in gen-
eral), as can be seen from the following example.

Example 1 Let X1 and X2 be two binary variables
and

M1(X1) = CH{[0.2, 0, 8], [0.5, 0.5]}
and

M2(X2) = CH{[0.3, 0.7], [0.6, 0.4]}
3Let us note that the definition is based on Moral’s concept

of conditional independence with relaxing convexity.
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be two credal sets describing X1 and X2, respectively;
further let

M3(X1X2) = CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]}

be another credal set describing both X1 and X2.
Here [a, b] means P (x1) = a and P (x̄1) = b, and
similarly [a, b, c, d] means P (x1x2) = a, P (x1x̄2) = b,
P (x̄1x2) = c and P (x̄1x̄2) = d.

Using (1) to M3(X1X2), one can realise that both
M1(X1) andM2(X2) are marginal toM3(X1X2).

M1 .M2 is obtained via Definition 1:

(M1 .M2)(X1X2)
= CH{[0.06, 0.14, 0.24, 0.56], [0.12, 0.48, 0.08, 0.32]

[0.15, 0.35, 0.15, 0.35], [0.3, 0.2, 0.3, 0.2]},

butM1 .M2 cannot be composed withM3, as they
are not projective. On the other hand

(M2 .M3)(X1X2)
= CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]},

as follows from (ii) of Lemma 1 and similarly, for the
same reason,

(M1 . (M2 .M3))(X1X2)
= CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]}. ♦

The following theorem, also proven in [16], expresses
the relationship between strong independence and the
operator of composition. It is, together with Lemma 1,
the most important assertion enabling us to introduce
multidimensional models.

Theorem 1 LetM be a credal set describing XK∪L

with marginalsM(XK) andM(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L).

3.2 Perfect Sequences of Credal Sets

In this subsection we will recall repetitive application
of the composition operator with the goal to create
a multidimensional model. Since the operator is not
associative, as demonstrated in Example 1, we have
to specify in which order the low-dimensional credal
sets are composed together. To make the formulae
more transparent, we will omit parentheses in the case
the operator is to be applied from left to right, i.e., in
what follows

M1 .M2 .M3 . · · · .Mm−1 .Mm (7)
= (· · · ((M1 .M2) .M3) . · · · .Mm−1) .Mm.

Furthermore, we will always assumeMi to be a credal
set describing XKi

and callM1,M2,M3, . . . ,Mm a
generating sequence of model (7).

The reader familiar with some papers on probabilistic,
possibilistic or evidential compositional models knows
that one of the most important notions in this theory is
that of a so-called perfect sequence, already introduced
in [16] also for credal sets. Let us recall it here.

Definition 2 A generating sequence of credal sets
M1,M2, . . . ,Mn is called perfect if

M1 .M2 = M2 .M1,

M1 .M2 .M3 = M3 . (M1 .M2),
...

M1 .M2 . · · · .Mm = Mm . (M1 . · · · .Mm−1).

Let us note that the concept of perfect sequence of
probability distributions is a special case of this defi-
nition, in the case of all credal sets being singletons.

It is evident that the necessary condition for perfect-
ness is pairwise projectivity (i.e., (2) holds for any pair
of credal sets from the generating sequence in ques-
tion) of low-dimensional credal sets. However, from
Example 1 one can easily see that this condition need
not be sufficient.

Therefore a stronger, necessary and sufficient condition,
expressed by the following assertion, must be fulfilled.

Lemma 2 A generating sequenceM1,M2, . . . ,Mm

is perfect iff the pairs of credal sets Mj and
(M1 . · · · .Mj−1) are projective, i.e., if

Mj(XKj∩(K1∪···∪Kj−1))
= (M1 . · · · .Mj−1)(XKj∩(K1∪···∪Kj−1)),

for all j = 2, 3, . . . , m.

From Definition 2 one can hardly identify the prop-
erties of perfect sequences beyond the algebraic ones;
the most important one is expressed by the follow-
ing characterisation theorem, which also suggests why
these sequences are called perfect.

Theorem 2 A generating sequence of credal sets
M1,M2,. . . ,Mm is perfect iff all the credal sets from
this sequence are marginal to the composed credal set
M1 .M2 . · · · .Mm:

(M1 .M2 . · · · .Mm)(XKj ) =Mj(XKj ),

for all j = 1, . . . , m.

The following (almost trivial) assertion, which brings
the sufficient condition for perfectness, resembles as-
sertions concerning decomposable models.
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Theorem 3 Let a generating sequence of pairwise
projective credal sets M1,M2, . . . ,Mm be such that
K1, K2, . . . , Km satisfies the following running inter-
section property:

∀j = 2, 3, . . . , m ∃`(1 ≤ ` < j)
such that Kj ∩ (K1 ∪ · · · ∪Kj−1) ⊆ K`.

Then the sequenceM1,M2, . . . ,Mm is perfect.

It should be emphasised that the running intersection
property of K1, K2, . . . , Km is a sufficient condition
to guarantee perfectness of a generating sequence of
pairwise projective assignments. By no means is this
condition necessary, as already demonstrated in [16].

Therefore, not only is perfectness of a sequence a
structural property connected with the properties of
K1, K2, . . . , Km but it also depends on specific values
of the respective basic assignments.

3.3 Perfect Sequence as Convex Hull

In this subsection we will study the relationship be-
tween perfect sequences of credal sets and those of
a probability distribution. Before doing that, let us
present a simple lemma necessary for the proof of the
main theorem.

Lemma 3 LetM1 andM2 be two projective credal
sets describing XK and XL, respectively. Then

{ext((M1 .M2)(XK ∪XL))} (8)
⊆ {P1 . P2 : P1 ∈ ext(M1(XK)),

P2 ∈ ext(M2(XL)), P ↓K∩L
1 = P ↓K∩L

2 }.

Proof. By Definition 1, (M1 .M2)(XK∪L) is the con-
vex hull of the set of probability distributions from the
set on the right-hand side of (8), taking into account
the definition of the composition operator for precise
probabilities. Therefore its extreme points must also
belong to this set. ut
Equality need not hold in (8), as can be seen from the
following simple example.

Example 2 Let

M1(X1) = CH{[0.2, 0.8], [0.5, 0.5]}

and
M2(X2) = CH{[0.5, 0.5], [0.8, 0.2]}

be two credal sets describing X1 and X2, respectively.
Then, as mentioned above,M1(X1) andM2(X2) are
projective, and therefore M1 . M2 is obtained by

Definition 1:

(M1 .M2)(X1X2) (9)
= CH{[0.1, 0.4, 0.1, 0.4], [0.16, 0.04, 0.64, 0.16],

[0.25, 0.25, 0.25, 0.25], [0.4, 0.1, 0.4, 0.1]},

nevertheless [0.25, 0.25, 0.25, 0.25] is not an extreme
point of (9) because it can be obtained as a linear com-
bination of [0.1, 0.4, 0.1, 0.4] and [0.4, 0.1, 0.4, 0.1]. ♦

Theorem 4 Let M1,M2,. . . ,Mm be a perfect se-
quence of credal sets such that each Mi, i = 1, . . . m,
is the convex hull of its extreme points, i.e.,

Mi(XKi
) = CH{Pi : Pi ∈ ext(Mi(XKi

))}.

Then
M1 .M2 . · · · .Mm

is a convex hull of all

P1 . P2 . . . . . Pm

such that each Pi ∈ ext(Mi(XKi
)), and

P1, P2, . . . , Pm form a perfect sequence.

Proof. Let us prove the assertion by induction. For
m = 2 it is obvious as it follows directly from Defini-
tion 1. Let us suppose that

M1 .M2 . · · · .Mj

= CH{P1 . P2 . . . . . Pj , Pi ∈ ext(Mi),
P1, P2, . . . , Pj is perfect}

for 2 ≤ j < m and prove that

M1 .M2 . · · · .Mj+1 (10)
= CH{P1 . P2 . . . . . Pj+1, Pi ∈ ext(Mi),

P1, P2, . . . , Pj+1 is perfect}

holds as well.

By convention (7)

M1 .M2 . . . . .Mj .Mj+1

= (· · ·M1 .M2 . · · · .Mj) .Mj+1

and sinceM1 .M2 .. . ..Mj andMj+1 are projective,
we can apply Definition 1 to these credal sets to obtain

(M1 .M2 . · · · .Mj) .Mj+1

= CH{Qj ·
Pj+1

P
↓(K1∪···∪Kj)∩Kj+1
j+1

,

Qj ∈ ext(M1 .M2 . · · · .Mj),
Pj+1 ∈ ext(Mj+1),
Q
↓(K1∪···∪Kj)∩Kj+1
j = P

↓(K1∪···∪Kj)∩Kj+1
j+1 }.
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However, due to Lemma 3

Qj ∈ {P1 . P2 . . . . . Pj , Pi ∈ ext(Mi),
P1, P2, . . . , Pj is perfect}.

Let us denote by P ∗1 , P ∗2 , . . . , P ∗j a perfect sequence
such that

Qj = P ∗1 . P ∗2 . . . . . P ∗j .

Then, due to Lemma 2 (applied to precise probabil-
ity distributions) P ∗1 , P ∗2 , . . . , P ∗j , Pj+1 forms a perfect
sequence. Therefore

M1 .M2 . · · · .Mj+1

⊆ CH{P1 . P2 . . . . . Pj+1, Pi ∈ ext(Mi),
P1, P2, . . . , Pj+1 is perfect}.

Let, on the other hand, P1, P2, . . . , Pj+1 be a per-
fect sequence of distributions such that each
Pi ∈ ext(Mi). Then

P1 . P2 . . . . . Pj+1 ∈M1 .M2 . · · · .Mj+1,

and therefore also

CH{P1 . P2 . . . . . Pj+1, P1, P2, . . . , Pj+1 is perfect}
⊆ M1 .M2 . · · · .Mj+1.

Therefore (10) is satisfied. ut

Example 3 Let M1(X1) and M2(X2) be the two
credal sets from Example 2,

M3(X1X2X3)
= CH{[0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3],

[0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12],
[0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075]}

and

M4(X3X4)
= CH{[0.44, 0.11, 0.18, 0.27], [0.56, 0.14, 0.12, 0.18],

[0.33, 0.22, 0.09, 0.36], [0.42, 0.28, 0.06, 0.24]}.

These credal sets form a perfect sequence
M1,M2,M3,M4, since M1 . M2 is marginal
toM3, andM3 andM4 are projective, as from (1)
one gets

M3(X3) = CH{[0.55, 0.45], [0.7, 0.3]} =M4(X3).

The credal setM1 .M2 .M3 .M4(X1, X2, X3, X4)
is then expressed as

M1 .M2 .M3 .M4 (11)
= CH{[0.08, 0.02, 0, 0, 0.24, 0.06, 0.04, 0.06, 0.04,

0.01, 0.02, 0.03, 0.08, 0.02, 0.12, 0.18],

[0.06, 0.04, 0, 0, 0.18, 0.12, 0.02, 0.08, 0.03,

0.02, 0.01, 0.04, 0.06, 0.04, 0.06, 0.24],
[0.128, 0.032, 0, 0, 0.024, 0.006, 0.004,

0.006, 0.256, 0.064, 0.128, 0.192,

0.032, 0.008, 0.048, 0.072],
[0.096, 0.064, 0, 0, 0.018, 0.012, 0.002,

0.008, 0.192, 0.128, 0.064, 0.256,

0.024, 0.016, 0.024, 0.096],
[0.32, 0.08, 0, 0, 0.06, 0.015, 0.015, 0.01, 0.16,

0.04, 0.08, 0.12, 0.02, 0.005, 0.03, 0.015],
[0.24, 0.16, 0, 0, 0.045, 0.03, 0.005, 0.02, 0.12,

0.08, 0.04, 0.16, 0.015, 0.01, 0.015, 0.06]}.
This credal set can be obtained either directly by
successive application of Definition 1 or as a convex
hull of P i1

1 .P i2
2 .P i3

3 .P i4
4 , where any P i1

1 , P i2
2 , P i3

3 , P i4
4

forms a perfect sequence, and any P
ij

j ∈ ext(Mj). In
this example we have six perfect sequences, namely

P 1
1 , P 1

2 , P 1
3 , P 1

4 ; P 1
1 , P 1

2 , P 1
3 , P 3

4 ;
P 1

1 , P 2
2 , P 2

3 , P 1
4 ; P 1

1 , P 2
2 , P 2

3 , P 3
4 ; (12)

P 2
1 , P 2

2 , P 3
3 , P 2

4 ; P 2
1 , P 2

2 , P 3
3 , P 4

4 ,

where

P 1
1 = [0.2, 0.8], P 2

1 = [0.5, 0.5],
P 1

2 = [0.5, 0.5], P 2
2 = [0.8, 0.2],

P 1
3 = [0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3],

P 2
3 = [0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12],

P 3
3 = [0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075],

P 1
4 = [0.44, 0.11, 0.18, 0.27],

P 2
4 = [0.56, 0.14, 0.12, 0.18],

P 3
4 = [0.33, 0.22, 0.09, 0.36],

P 4
4 = [0.42, 0.28, 0.06, 0.24]. ♦

As we stated in the Introduction, in the precise prob-
ability framework any multidimensional distribution
representable by a Bayesian network can also be repre-
sented in the form of a perfect sequence, and vice versa.
An analogous result, although somewhat weaker, for
perfect sequences of credal sets will be presented in
the next section.

4 Credal Networks

In this section we will deal with credal networks and
their relationship to credal compositional models.

4.1 Basic Concepts

A credal network [1] over XN is (in analogy to Bayesian
networks) a pair (G, {P1, . . . , Pk}) such that, for any
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i = 1, . . . , k, (G, Pi), is a Bayesian network over XN ,
i.e., each Pi is a system of conditional probability
distribution forming the joint distribution of XN ,
P i(XN ).

The resulting model is a credal set, which is the convex
hull of the Bayesian networks, i.e.,

CH{P 1(XN ), . . . , P k(XN )}.
It is evident that this definition loses the attractiveness
of Bayesian networks, where the overall information
is computed from local pieces of information. Let us
denote by CN (XN ) the class of all credal networks
over XN .

The most popular (and also most effective) type of
credal networks is represented by those called sep-
arately specified. A separately specified credal net-
work over XN is a pair (G, M), where M is a set
of conditional credal sets M(Xi|pa(Xi)) for each
Xi ∈ XN , and pa(Xi) denotes the set of parent vari-
ables of Xi. Here the overall model is, in analogy to
Bayesian networks, obtained as a strong extension of
theM(Xi|pa(Xi)), i ∈ N . Analogous to the previous
paragraph, let us denote by SCN (XN ) the class of all
separately specified credal networks over XN .

Nevertheless, a lot of situations exist in which sepa-
rately specified credal networks either cannot be used
or their use leads to less specific models. For more
details, the reader is referred to [1]; one extremely
simple example can be found in the next subsection
(Example 5).

4.2 Credal Networks and Perfect Sequences
of Credal Sets

In this subsection we will prove, using the preceding
results, a relationship between credal networks and
perfect sequences of credal sets. For this purpose,
let us denote by CM(XN ) the class of compositional
models over XN .

Theorem 5 For any XN

SCN (XN ) ⊂ CM(XN ) ⊂ CN (XN ). (13)

Proof. Let

(G,M(Xi|pa(Xi)), i ∈ N) (14)

be a separately specified credal network over XN and
N be ordered in such a way that i > j ∈ pa(i) for each
i ∈ N . The overall model (joint credal set describing
XN ) is then obtained as a strong extension of credal
sets from (14).

Let us define Mi(Xi ∪ pa(Xi)) as a strong ex-
tension of M(Xi|pa(Xi)) and M(pa(Xi)), where

M(pa(Xi)) is a marginal of the strong extension of
M(Xj |pa(Xj)), j = 1, . . . , i − 1. Now it easily fol-
lows that any Mi(Xi ∪ pa(Xi)) is a marginal of
the strong extension of (14). Therefore, credal sets
M1(X1), . . . ,Mn(Xi ∪ pa(Xn)) form a perfect se-
quence defining the same joint model as (14).

IfM1(XK1), . . . ,Mm(XKm) is perfect, then according
to Theorem 4

M1 .M2 . · · · .Mm

= CH{P1 . P2 . . . . . Pm, Pi ∈ ext(Mi),
P1, P2, . . . , Pm is perfect}.

For any perfect sequence P1, P2, . . . , Pm a Bayesian
network exists representing the distribution

P1 . . . . . Pm

such that, for each variable Xj , ` ∈ {1, . . . , m} exists
such that ({Xj} ∪ pa(Xj)) ⊂ {Xi}i∈K`

. Therefore,

M1 .M2 . · · · .Mm = CH{(Gi, Pi), 1, . . . , k}.

As any perfect sequence represents the same system
of conditional independences, it is evident that any
Bayesian network can be defined on the same graph
G, which concludes the proof. ut
For the description of an algorithm reconstructing a
credal network from a perfect sequence of credal sets
the reader is referred to the following subsection.

The following simple examples demonstrate that the
inclusions in (13) are proper.

Example 4 Let X1 and X2 be two binary variables
and P1 and P2 be defined as follows

P1(x1) = 0.4 P1(x2|x1) = 0.25 P1(x2|x̄1) = 0.5,
P2(x1) = 0.6 P2(x2|x1) = 0.5 P2(x2|x̄1) = 0.25.

They form, together with the graph X1 −→ X2, two
Bayesian networks. The corresponding credal network
is

CH{[0.1, 0.3, 0.3, 0.3], [0.3, 0.3, 0.1, 0.3]}. (15)

From these distributions one can get the following
credal sets forming a perfect sequence

M1(X1) = CH{[0.4, 0.6], [0.6, 0.4]},

M2(X1X2) = CH{[0.1, 0.3, 0.3, 0.3], [0.2, 0.2, 0.15, 0.45]}
{[0.15, 0.45, 0.2, 0.2], [0.3, 0.3, 0.1, 0.3]}.

It is evident that M1 .M2(X1X2) = M2(X1X2),
which also contains other Bayesian networks not con-
tained in (15). ♦
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Example 5 Let

M1(X1X2)
= CH{[0.2, 0.2, 0, 0.6], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0.2, 0.3, 0.3, 0.2]}.

be a credal set describing variables X1 and X2 with
values in X1 and X2 (Xi = {xi, x̄i}), respectively.
From its extreme points we obtain the following
distributions:

P1(x2) = 0.2 P1(x1|x2) = 1 P1(x1|x̄2) = 0.25
P2(x2) = 0.2 P2(x1|x2) = 0.5 P2(x1|x̄2) = 0.5
P3(x2) = 0.5 P3(x1|x2) = 0.5 P3(x1|x̄2) = 0.5
P4(x2) = 0.5 P4(x1|x2) = 0.4 P2(x1|x̄2) = 0.6.

These are, together with the graph X2 −→ X1, four
Bayesian networks. Their convex hull is exactly the
set M1(X1X2). Nevertheless, it is not a separately
specified credal network. To obtain that, we need the
credal setsM(X2),M(X1|x2) andM(X1|x̄2).

Using (1) and (3), we obtain

M(X2) = CH{[0.2, 0.8], [0.5, 0.5]},
M(X1|x2) = CH{[1, 0], [0.4, 0.6]},
M(X1|x̄2) = CH{[0.25, 0.75], [0.6, 0.4]}.

The strong extension of these credal sets is

M̃1(X1X2)
= CH{[0.2, 0.2, 0, 0.6], [0.2, 0.48, 0, 0.32],

[0.08, 0.2, 0.12, 0.6], [0.08, 0.48, 0.12, 0.32],
[0.5, 0.125, 0, 0.375], [0.5, 0.3, 0, 0.2],
[0.2, 0.125, 0.3, 0.375], [0.2, 0.3, 0.3, 0.2]}.

which is less precise than the original model. ♦

It can be viewed as an advantage of compositional
models that they are based on “local knowledge” even
in cases when the credal network is not separately
specified.

4.3 From Perfect Sequence to Credal
Network

In this subsection we will present an algorithm for
transforming a perfect sequence of credal sets to a
credal network and we will illustrate its application
on a simple example.

Having a perfect sequenceM1,M2, . . . ,Mm (M` be-
ing a credal set describing XK`

), we first order all of
the variables for which at least one of the credal sets
M` is defined in such a way that first we order (in an
arbitrary way) variables for whichM1 is defined, then
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Figure 1: Graph of credal network generated from a
perfect sequence

variables fromM2 that are not contained inM1, etc.
Finally we have

{X1, X2, X3, . . . , Xn} = {Xi}i∈K1∪...∪Km
.

Then we get a graph of the constructed evidential
network in the following way:

(i) the nodes are all the variables X1, X2, X3, . . . , Xn;

(ii) there is an edge (Xi → Xj) if there exists a credal
setM` such that both i, j ∈ K`, j 6∈ K1 ∪ . . . ∪
K`−1 and either i ∈ K1 ∪ . . . ∪K`−1 or i < j.

Having the structure of the credal network, i.e., graph
G, one can obtain the systems of conditional probabil-
ity distributions from corresponding perfect sequences
of probability distributions.

Evidently, for each j the requirement j ∈ K`, j 6∈
K1∪. . .∪K`−1 is met exactly for one ` ∈ {1, . . . , n}. It
means that all the parents of node Xj must be from the
respective set {Xi}i∈K`

and therefore the necessary
conditional probability distributions P i(Xj |pa(Xj))
can easily be computed from probability distribution
P i

` .

Example 3 (Continued) From perfect sequence

M1,M2,M3,M4,

we get the following ordering of variables

X1, X2, X3, X4

and the structure of the credal network as suggested
in Figure 1. From six perfect sequences of probability
distributions (12) one gets six systems of conditional
probability distributions:

P 1
1 (X1), P 1

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 1
1 (X1), P 1

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),
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P 1
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 1
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),

P 2
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 2
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),

where

P 1
1 (X1 = x1) = 0.2, P 2

1 (X1 = x1) = 0.5,

P 1
2 (X2 = x2) = 0.5, P 2

2 (X2 = x2) = 0.8,

P3(X3 = x3|X1 = x1, X2 = x2) = 1,

P3(X3 = x3|X1 = x1, X2 = x̄2) = 0.75,

P3(X3 = x3|X1 = x̄1, X2 = x2) = 0.5,

P3(X3 = x3|X1 = x̄1, X2 = x̄2) = 0.25,

P 1
4 (X4 = x4|X3 = x3) = 0.8,

P 1
4 (X4 = x4|X3 = x̄3) = 0.4,

P 2
4 (X4 = x4|X3 = x3) = 0.4,

P 2
4 (X4 = x4|X3 = x̄3) = 0.2.

The resulting model is again a credal set (11). ♦

5 Conclusions

This paper is devoted to the further development of
the operator of composition for credal sets. Our main
attention is paid to the relationship between so-called
perfect sequences of credal sets, and those of (pre-
cise) probability distributions with the aim to find
the relationship between credal compositional models
and credal networks. We have proved that a perfect
sequence of credal sets is a convex hull of perfect se-
quences of extreme points of these credal sets. We
have also proved that perfect sequences of credal sets
form a proper subclass of credal networks and, simul-
taneously, they are a proper superclass of separately
specified credal networks. In other words, any sepa-
rately specified credal network can be expressed in the
form of credal compositional models and any perfect
sequence of credal sets can be expressed as a credal
network.

From the results presented in this paper it is evident
that compositional models for credal sets can be seen
as an alternative to credal networks. Therefore it
seems desirable to further develop the composition
operator within this framework. The first, and most
important, task will be a definition of composition in
the general case.
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