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Abstract
Classification algorithms based on different forms of
support vector machines (SVMs) for dealing with
interval-valued training data are proposed in the pa-
per. L2-norm and L∞-norm SVMs are used for con-
structing the algorithms. The main idea allowing
us to represent the complex optimization problems
as a set of simple linear or quadratic programming
problems is to approximate the Gaussian kernel by
the well-known triangular and Epanechnikov kernels.
The minimax strategy is used to choose an optimal
probability distribution from the set and to construct
optimal separating functions.

Keywords. Classification, support vector machine,
kernel, interval-valued data, minimax strategy, lin-
ear programming, quadratic programming, extreme
points.

1 Introduction

The binary classification problem can be formally writ-
ten as follows. Given n training data (examples, pat-
terns) S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which
xi ∈ Rm represents a feature vector involving m fea-
tures and yi ∈ {−1, 1} indices the class of the associ-
ated examples, the task of classification is to construct
an accurate classifier c : Rm → {−1, 1} that maxi-
mizes the probability that c(x) = yi for i = 1, ..., n.
Generally xi may belong to an arbitrary set X , but we
consider the special case X = Rm for simplicity. One
of the ways for classification is to find a real valued
separating function f(x,w, b) having parameters w
and b such that w = (w1, ..., wm) ∈ Rm and b ∈ R, for
example, f(x,w, b) = 〈w,x〉+ b. Here 〈w,x〉 denotes
the dot product of two vectors w and x. The sign of
the function determines the class label prediction or
c(x). We also introduce the notation x(k)

i for the k-th
element of the vector xi.

There are a lot of classification algorithms, but most

of them are based on using a training set consisting of
precise or point-valued data. However, training exam-
ples in many real applications can be obtained only
in the interval form. Interval-valued data may result
from imperfection of measurement tools or imprecision
of expert information, from missing data. It should be
noted that the interval-valued data can be regarded as
a special case of a more general form of imprecise data.
For example, we cannot observe some feature, but we
know that the difference between values of the feature
for data from different classes is less than some known
value. In this case, we have imprecise training data.

Many classification algorithms have been presented for
dealing with interval-valued data [11, 14, 17]. Most al-
gorithms use an obvious approach when interval-valued
observations are replaced by precise values based on
some additional assumptions, for example, by taking
middle points of intervals [12]. This approach is rather
efficient when intervals are small and do not intersect
each other. If intervals in training data are very large,
then this approach may lead to incorrect classification.

One of the classification algorithms taking into account
all points of intervals has been proposed by Utkin
and Coolen [21]. However, this algorithm uses a weak
assumption which restricts its usage. According to this
assumption, the separating function f is monotone, for
example, linear, because its lower and upper bounds
in this case are determined only by the bounds of
pattern intervals. However, in spite of the restricted
application of the algorithm, it looks for “optimal”
points to some extent of the expected classification risk,
but not for points of intervals of training data. This
is an important peculiarity of the algorithm. Similar
approaches have been used by Hüllermeier [10], by
Antonucci et al. [1] in their interesting classification
algorithms under interval and fuzzy training data.

We propose a general approach for constructing ro-
bust classification algorithms dealing with imprecise
training data which can be represented in the form of
closed intervals or some compact convex sets of values
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of training data. In contrast to the algorithms where
intervals are replaced by points, the proposed algo-
rithm searches for optimal precise points by applying
the robust or maximin strategy of decision. In fact,
we select a single probability distribution or a point
in the interval of expected risk values in accordance
with a certain decision strategy instead of points in
intervals of training data.

We use the term robust in the sense defined by Xu et
al. [26]. The robustness property means here reducing
sensitivity of a classifier to incorrect replacement of
intervals by point-valued analogues. There are dif-
ferent definitions of robustness. We use robustness
stemmed from the robust optimization where a mini-
max optimization is performed over all possible values
of intervals. This definition differs from robustness
in statistics which studies how an estimator behaves
under a small perturbation of the statistics model.

In order to construct new classification algorithms
dealing with interval-valued training data, we propose
to use the following three ideas:

1. Interval-valued observations produce a set of prob-
ability distributions such that the lower and upper
expected classification risk measures can be deter-
mined in terms of the belief functions in a simple
way.

2. There are many variants of SVMs. It is proposed
to choose standard L2-norm SVM. Moreover, it is
proposed to use one of the L∞-norm SVMs such
that constraints in its dual form do not depend
on vectors of observations xi, i = 1, ..., n. This
allows us to solve the corresponding optimization
problem by using extreme points of the polytope
produced by the constraints.

3. It is proposed to replace the Gaussian kernel by
the well-known triangular kernel and Epanech-
nikov kernel which can be regarded as two approx-
imations of the Gaussian kernel. This replacement
allows us to get a set of linear or quadratic opti-
mization problems with variables xi restricted by
intervals Ai, i = 1, ..., n.

It should be noted that the idea of approximating the
Gaussian kernel by the triangular kernel in one-class
classification problems has been studied by the authors
[22]. This idea and other ones are exploited below for
constructing new binary classification algorithms.

2 A Standard L2-Norm SVM by
Precise Data

Suppose we have training data (x1, y1), ..., (xn, yn) ∈
Rm×{−1,+1}. Let φ be a feature map Rm → G such
that the data points are mapped into an alternative
higher-dimensional feature space G. In other words,
this is a map into an inner product space G such that
the inner product in the image of φ can be computed by
evaluating some simple kernel K(x,y) = (φ(x), φ(y)),
such as the Gaussian kernel

K(x,y) = exp
(
−‖x− y‖2

/σ2
)
.

Here σ is the kernel parameter determining the geo-
metrical structure of the mapped samples in the kernel
space [24]. It is important to note that Gaussian ker-
nels are very popular because they support many com-
plex models and are rather flexible. Moreover, they
show good features and strong learning capability [25].

The SVM minimizes the empirical risk measure

R = n−1
n∑

i=1
l(xi),

as an approximation of the expected risk, which can
be regarded as a bound depending on the so-called VC
dimension introduced by Vapnik [23]. Here l is a loss
function. The minimization of the above functional is
an ill-posed problem because it admits an infinite num-
ber of solutions. In order to overcome this difficulty,
regularization theory [19] provides a framework for
solving the problem by adding appropriate constraints
on the solution. This can be done by introducing a
smoothness or penalty term J(f) and a tuning “cost”
parameter C which balances the tradeoff between the
empirical risk measure and the penalty term. As a
result, a general class of regularization problems has
the form:

min
f

(
C
∑

l(xi) + J(f)
)
.

Standard penalty terms are the Ls-norms such that
Ls = ‖w‖s, s > 0. In particular, the most popular
penalty in the SVM classifier is ‖w‖2. Hence, the
SVM classifier can be represented in the form of the
following convex optimization problem (the quadratic
programming problem):

min
ξ,w,b

R = min
ξ,w,b

(
1
2 ‖w‖2 + C

n∑

i=1
ξi

)
, (1)

subject to

ξi ≥ 0, yi (〈w,φ(xi)〉+ b) ≥ 1− ξi, i = 1, ..., n. (2)
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Here ξi, i = 1, ..., n, are the slack variables. The
quantity Cξi is the “penalty” for any data point xi
that either lies within the margin on the correct side
of the hyperplane (ξi ≤ 1) or on the wrong side of
the hyperplane (ξi > 1). The above optimization
problem is obtained under condition that the so-called
hinge loss function is used, i.e., l(x) = max(0, 1 −
yif 〈w,φ(xi)〉).
Instead of minimizing the primary objective function
(1), a dual objective function, the so-called Lagrangian,
can be formed of which the saddle point is the optimum.
The dual programming problem is of the form:

max
α




n∑

i=1
αi −

1
2

n∑

i=1

n∑

j=1
αiαjyiyjK(xi,xj)


 , (3)

subject to
n∑

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, ..., n. (4)

After substituting the obtained solution into the ex-
pression for the decision function f , we get the “dual”
separating function

f(x) =
n∑

i=1
αiyiK(xi,x) + b.

The above SVM is often called the L2-norm SVM
due to the definition of the regularization term. The
parameter b is defined by using support vectors xi from
the following equation b = yj −

∑n
i=1 αiyiK(xi,xj).

At the same time, there are other forms of the SVM
defined by different Ls-norms of the penalty term. It
turns out that the SVM with the L∞-norm can be
very useful when we deal with interval-valued data.

3 Interval-Valued Training Data and
Belief Functions

Suppose we have training data (x1, y1), ..., (xn, yn).
We again have two classes, i.e., yi ∈ {−1, 1}. How-
ever, in contrast to training data considered in the
previous sections, xi are interval-valued, i.e., xi ∈ Ai,
i = 1, ..., n. Here Ai = [a(1)

i , a
(1)
i ] × ... × [a(m)

i , a
(m)
i ],

i.e., a(k)
i ≤ x

(k)
i ≤ a

(k)
i , k = 1, ...,m; a(k)

i , a(k)
i are

bounds for values of the k-th feature in the i-th train-
ing example.

There are several ways in which one could deal with
interval-valued data. In this paper, we consider the
expected risk by interval-valued data in the framework
of belief functions or Dempster-Shafer theory. Below,

we give some basic definitions in the framework of
belief functions.

Let X be a universal set under interest, usually referred
to in evidence theory as the frame of discernment. Sup-
pose n observations were made of an element u ∈ X ,
each of which resulted in an imprecise (non-specific)
measurement given by a set A of values. Let ci de-
note the number of occurrences of the set Ai ⊆ X ,
and Po(X ) the set of all subsets of X (power set of
X ). A frequency function m, called basic probability
assignment (BPA), can be defined such that [6, 16]:

m : Po(X )→ [0, 1], m(∅) = 0,
∑

A∈Po(X )

m(A) = 1.

According to [6], this function can be obtained as
follows:

m(Ai) = ci/n.

According to [16], the belief Bel(A) and plausibility
Pl(A) of an event A ⊆ X can be defined as

Bel(A) =
∑

Ai:Ai⊆A
m(Ai),

Pl(A) =
∑

Ai:Ai∩A 6=∅
m(Ai).

As pointed out in [9], a belief function can formally be
defined as a function satisfying axioms which can be
viewed as a weakening of the Kolmogorov axioms that
characterize probability functions. Therefore, it seems
reasonable to understand a belief function as a gener-
alized probability function [6] and the belief Bel(A)
and plausibility Pl(A) measures can be regarded as
lower and upper bounds for the probability of A, i.e.,
Bel(A) ≤ Pr(A) ≤ Pl(A). This implies that for a
function l(x), we can define the lower expectation R
and the upper expectation R of the function l(x) in
the framework of belief functions as follows [13, 18]:

R =
n∑

i=1
m(Ai) inf

xi∈Ai

l(xi),

R =
n∑

i=1
m(Ai) sup

xi∈Ai

l(xi).

The above definition provides a simpler way for deter-
mining the bounds for the expected risk. By using the
assumption accepted in the empirical expected risk,
we can conclude that m(Ai) = 1/n for all i = 1, ..., n.
Hence, we get

R = 1
n

n∑

i=1
inf

xi∈Ai

l(xi), R = 1
n

n∑

i=1
sup

xi∈Ai

l(xi).
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It follows from the above that we have the interval
[R,R] of the expected risk measure instead of its pre-
cise value. In order to use this interval in solving the
classification problem, we have to determine a strategy
of decision making which selects one point within this
interval for searching optimal classification parameters
w, ξ and b in (1)-(2) or α1, ..., αn in (3)-(4).

One of the well-known and popular ways for dealing
with the interval of the expected risk is to use the
minimax (pessimistic or robust) strategy. According
to the minimax strategy, we select a probability dis-
tribution from the set of distributions such that the
expected risk R achieves its maximum for fixed values
of parameters. It should be noted that the “optimal”
probability distributions may be different for differ-
ent values of parameters. If to return to the interval
[R,R], then the minimax strategy assumes the largest
risk, i.e., the upper bound R. The minimax strategy
can be explained in a simple way. We do not know a
precise probability distribution and every distribution
from their predefined set can be selected. Therefore,
we should take the “worst” distribution providing the
largest value of the expected risk. The minimax cri-
terion can be interpreted as an insurance against the
worst case because it aims at minimizing the expected
loss in the least favorable case [15]. This criterion of
decision making can be regarded as the well-known
Γ-minimax [4, 7].

Robust algorithms have been exploited in classifica-
tion problems due to the opportunity to avoid some
strong assumptions underlying the standard classifica-
tion algorithms. As pointed out by Xu et al. [26], the
use of robust optimization in classification is not new.
One of the popular robust classification algorithms is
based on the assumption that inputs are subject to an
additive noise, i.e., x∗i = xi+ 4xi, where noise 4xi is
governed by a certain distribution. The simplest way
for dealing with noise is to assume that every “true”
data point is only known to belong to the interior of an
Euclidean ball centered at the “nominal” data point xi
and each point can move around within the Euclidean
ball. This algorithm has a very clear intuitive geomet-
ric interpretation [3]. One can see that the algorithm
with interval-valued data and the robust algorithms
[3, 26] are very close.

Finally, we can write the optimization problem for
computing the optimal classification parameters (w,
ξ, b or α, b) as follows:

R = sup
xi∈Ai,i=1,...,n

min
ξ,w,b

n∑

i=1
l(xi),

4 L2-Norm SVM by Interval-Valued
Data

4.1 A General Problem and a New Kernel

Let us rewrite the objective function of problem (3)-(4)
by taking into account interval-valued elements of the
training set

sup
xi∈Ai,i=1,...,n

max
α

×




n∑

i=1
αi −

1
2

n∑

i=1

n∑

j=1
αiαjyiyjK(xi,xj)


 . (5)

This is a nonlinear optimization problem whose so-
lution is generally a hard problem. Therefore, we
propose a method for its solution which can reduce
this problem to a finite set of linear programming
problems.

One of the ideas underlying the proposed algorithm
is to approximate the Gaussian kernel K(x,y) by
another kernel which could somehow simplify the op-
timization problem. It is proposed to introduce a new
kernel function

K1(x,y) = max{0, 1− ‖x− y‖1
/σ2}, (6)

This is the well-known triangular kernel. Its main
peculiarity is that K1 is linear. This peculiarity allows
us to solve the above optimization problem.

Let us fix the values of α and write the dual optimiza-
tion problem with the introduced kernel K1 having
optimization variables xi ∈ Ai, i = 1, ..., n:

inf
xi,i=1,...,n


1

2

n∑

i=1

n∑

j=1
αiαjyiyjGij −

n∑

i=1
αi


 , (7)

subject to

Gij = max
{

0, 1− ‖xi − xj‖1

σ2

}
, i, j = 1, ..., n, (8)

a
(k)
i ≤ x(k)

i ≤ a(k)
i , k = 1, ...,m, i = 1, ..., n. (9)

Here Gij is a new variable such that Gij = K1(xi,xj).

We do not add constraints (4) to the set of constraints
(8)-(9) because the values of α are fixed, i.e., we con-
sider the problem with variables xi, i = 1, ..., n. One
can see from (7)-(9) that this problem is linear in case
of the triangular kernel. According to some general
results from linear programming theory, an optimal
solution to the above problem is achieved at extreme
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points or vertices of the polytope produced only by
constraints (8)-(9). This is the first main feature of
the proposed approach and the main reason for in-
troducing the triangular kernels. Moreover, it can be
seen from constraints (8)-(9) that they do not depend
on variables α. This implies that the extreme points
do not depend on α. This is the second feature which
is used below. The linearity of the above problem
and the independence of vertices of the polytope of
variables α allow us to represent the initial optimiza-
tion problem with objective function (5) as a finite set
of standard quadratic programming problems which
are formed by substituting extreme points x∗i of the
polytope produced by (8)-(9) into the kernel function
K1(xi,xj) instead of xi.

We do not consider details of the optimization prob-
lem representation as a set of quadratic programming
problems. However, we discuss about a set of extreme
points x∗i , i = 1, ..., n. It is interesting to note that Gij
totally depends on xi, i = 1, ..., n. This implies that
only constraints for xi define the extreme points which
are trivial and coincide with the bounds of intervals
Ai, i = 1, ..., n. Moreover, we do not need to represent
constraints (8) in the form of standard inequalities. By
enumerating the extreme points x∗i , we compute all
values Gij and substitute them into objective function
(7). Finally, we have one of the standard quadratic pro-
gramming problems corresponding to one combination
of bounds of intervals Ai, i = 1, ..., n, whose solution
can be found, for example, by means of the packages
“kernlab”, “e1071”, “wSVM” in the R-project.

The optimal values of α correspond to the largest
value of objective function (7) over all extreme points
x∗i . After substituting the obtained solution into the
expression for the decision function f , we get

f(x) =
n∑

i=1
αiyiK(xi,x) + b. (10)

If we have n∗ ≤ n interval-valued observations such
that all their features are interval-valued, then we have
to solve mn∗ quadratic programming problems. Of
course, when n∗ is rather large or the training examples
are characterized by many interval-valued features m,
then the obtained algorithm leads to extremely hard
computations. Therefore, we propose below another
classification algorithm whose complexity does not
depend on the number of features m.

5 L∞-Norm SVM

5.1 The Primal Form

We aim to find such a form of the SVM that would sep-
arate classification parameters, for example, α1, ..., αn,

and intervals of x1, ...,xn. The SVM whose dual form
satisfies this condition was proposed by Zhou et al. in
[27]. It is based on using the L∞-norm for writing
the regularization term ‖w‖. The L∞-norm leads to
one of the possible variants of the SVM. Suppose that
we have fixed precise values x1, ...,xn from A1, ...,An,
respectively. According to [27], the optimization prob-
lem for computing the separating function parameters
is of the form:

minR = min
(
−r + C

n∑

i=1
ξi

)
, (11)

subject to

yj

(
n∑

i=1
αiyiK(xi,xj) + b

)
≥ r − ξj , j = 1, ..., n,

(12)
− 1 ≤ αi ≤ 1, i = 1, ..., n, (13)
r ≥ 0, ξj ≥ 0, j = 1, ..., n. (14)

Here αj , ξj , j = 1, ..., n, r, b are optimization variables;
C ≥ 0 is a constant. One can see that the separat-
ing function f is written in constraints in terms of
Lagrange multipliers αi (see (10)).

The authors of [27] show that the VC dimension in
this case is bounded and the separating function f can
be approached by minimizing the empirical expected
risk measure. It is indicated in [27] that training
SVMs is simpler than the L2-norm SVMs, especially
for large-scale problems.

5.2 The Dual Form

It should be noted that the SVM algorithm proposed
by Zhou et al. in [27] is an interesting version of
the SVM. However, its direct use does not help us in
solving the classification problem with interval-valued
data, which is viewed as a optimization problem with
the objective function

R = max
xi

min
r,b,αj ,ξj

(
−r + C

n∑

i=1
ξi

)
,

and constraints (12)-(14), xi ∈ Ai, i = 1, ..., n.

Another advantage of the above SVM is very important
for us. This is a special form of the dual problem which
allows us to get a simple way for dealing with interval-
valued data. Therefore, let us write the dual form for
the above problem by fixed xi, i = 1, ..., n.

First of all, we replace the variables αj in (11)-(14)
by non-negative variables aj ≥ 0 and cj ≥ 0 in order
to have only non-negative variables, i.e., αj = aj − cj .
By using the standard method for constructing the
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dual form, we get the following linear programming
problem:

max
n∑

i=1
(−gi − hi) ,

subject to gi, hi ≥ 0,

n∑

i=1
zi ≥ 1, 0 ≤ zj ≤ C, j = 1, ..., n,

n∑

i=1
ziyi = 0,

gj − hj = yj

(
n∑

i=1
ziyiK(xj ,xi)

)
, j = 1, ..., n.

Here z = (z1, ..., zn), gi, hi, i = 1, ..., n, are optimiza-
tion variables. By substituting the last constraint
into the objective function, we get another objective
function

max
n∑

i=1


−2gi − yi




n∑

j=1
zjyjK(xi,xj)




 .

Note that the maximum of the objective function is
achieved when variable gi is as small as possible, i.e.,
gi = 0 for all i = 1, ..., n. Hence, we get the following
simplified optimization problem

min
z

n∑

i=1
yi




n∑

j=1
zjyjK(xi,xj)


 , (15)

subject to

n∑

i=1
zi ≥ 1, 0 ≤ zj ≤ C, j = 1, ..., n, (16)

n∑

i=1
ziyi = 0. (17)

At first glance, the above dual form of the optimization
problem does not differ from the primal form from
the viewpoint of its use. However, one can see that
constraints of the dual form do not contain terms
K(xi,xj) and do not contain vectors xi. This is a
very important feature of the dual form, which allows
us to introduce interval-valued data into the SVM. It
should be noted that the same property cannot be
obtained by considering the standard SVM based on
the L1-norm or the L2-norm. Therefore, problem (15)-
(17) plays a key role in constructing the algorithm of
classification with interval-valued data.

5.3 Extreme Points of the Polytope

If we assume that the values of K(xi,xj) are precisely
known, i.e., the values xi, i = 1, ..., n, are precise or
fixed, then one of the ways for solving the linear pro-
gramming problem (15)-(17) is to find the extreme
points or vertices of the polytope produced by con-
straints (16)-(17) and denoted by z(l), l = 1, ..., N .
Here N is the total number of extreme points. An
optimal solution to the above problem is achieved at
one of the extreme points.

Proposition 1 Let n− and n+ be numbers of train-
ing examples in classes labelled y = −1 and y = 1,
respectively. All extreme points of the polytope pro-
duced by constraints (16)-(17) can be divided into two
subsets. The first subset consists of

N1 =
min(n−,n+)∑

t=d1/2Ce

(
n−
t

)(
n+
t

)

extreme points such that every point contains t ele-
ments from every class equal to C and other elements
are 0. Here t is an integer determined from the condi-
tion

1
2C < t ≤ min(n−, n+).

Let s be an integer determined from the condition

1
2C − 1 ≤ s < min

(
1

2C , n−, n+

)
.

If there exists s ≥ 0, then the second subset consists of

N2 = (n− − s)(n+ − s)
(
n−
s

)(
n+
s

)

extreme points such that every point contains s (if
there exists s > 0) elements from every class equal to
C, one element from every class is 1/2 − sC, other
elements are 0.

Proposition 1 can be regarded as an extension of Propo-
sition 5 in [20].

5.4 L∞-Norm SVM by Interval-Valued Data

Let us rewrite the objective function of problem (15)-
(17) by taking into account the interval-valued ele-
ments of the training set

min
l=1,...,N

min
xi∈Ai,i=1,...,n

n∑

i=1

n∑

j=1
z

(l)
j yiyjK(xi,xj). (18)

By having extreme points, we can replace the opti-
mization problem (15)-(17) by a set of N = N1 +N2
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(see Proposition 1) objective functions provided above.
However, we cannot solve the obtained set of optimiza-
tion problems with variables xi ∈ Ai, i = 1, ..., n, in a
simple way because the function K(xi,xj) is nonlinear.
Therefore, we again apply the idea of replacement the
Gaussian kernel by its approximations. According to
this idea, the Gaussian kernel can be approximated
by another kernel which could somehow simplify the
optimization problem. It is proposed to introduce two
kernel functions

K1(x,y) = max{0, 1− ‖x− y‖1
/σ2},

K2(x,y) = max{0, 1− ‖x− y‖2
/σ2}.

Both the kernels can be regarded as approximations
of the Gaussian kernel. The first one is the triangular
kernel considered in the previous sections. The second
kernel is known as the Epanechnikov kernel.

Let us fix the values of z(l) = (z(l)
1 , ..., z

(l)
n ) and write

the dual optimization problem with the introduced
kernels Kr, r = 1, 2, for the l-th extreme point z(l) of
(16)-(17) as follows:

min
xi,i=1,...,n

n∑

i=1

n∑

j=1
z

(l)
j yiyjGij , (19)

subject to
Gij = max

{
0, 1− ‖xi − xj‖r /σ2} , i, j = 1, ..., n,

(20)
a

(k)
i ≤ x(k)

i ≤ a(k)
i , k = 1, ...,m, i = 1, ..., n. (21)

Here x(j)
i is the value of the j-th feature of the i-th ex-

ample; Gij is a new variable such that Gij = K(xi,xj);
r is 1 or 2 if we use the triangular or Epanechnikov
kernel, respectively.

Finally, we get the set of N linear programming prob-
lems in case of using the triangular kernel. In case of
the Epanechnikov kernel, we have the same number of
quadratically constrained linear programs (QCLPs). It
can be numerically solved by means of several methods,
for example, by using the sequential quadratic pro-
gramming [5] which efficiently implemented by means
of SNOP [8]. The optimal values of xi correspond to
the smallest value of objective function (19) over all
extreme points x∗i .

It is interesting to note that the number N of opti-
mization problems does not depend on the number
of features m. This is an important peculiarity of
the proposed algorithm, which allows us to apply the
algorithm to application problems with many features.

The function f(x) can be rewritten in terms of La-
grange multipliers as

f(x) =
n∑

i=1
α∗i yiK(x∗i ,x) + b.

However, we do not know the optimal values of αi be-
cause we used the dual optimization problem. Here we
have two ways for computing the separating function.
The first way is based on the fact that, by knowing the
optimal solution z∗ of the dual problem, the optimal
solution α∗ of the primal problem can be found by
well-known algorithms. In particular, if the algorithm
is implemented by using R-project, then the function
“solveLP” in the package “linprog” has the output
variable “con$dual” which provides the dual solution.

The second way is simpler. If we know precise optimal
values x∗i of intervals Ai, i = 1, ..., n, then we can
return to the initial problem (11)-(14) or to its dual
form (15)-(17) and solve them by given fixed x∗i .

5.5 Comments about Constraints with the
Triangular and Epanechnikov Kernels

It should be noted that constraints (20) are written
in the short form. In order to solve the corresponding
optimization problems, they have to be represented
by the standard linear or quadratic inequalities. We
do not consider in detail the representation of (20)
because it is trivial due to the following two tricks.

First, the “standard” representation of (20) depends
on the sign of the product yiyj . If yiyj ≥ 0, then we
get two constraints of the form:

Gij ≥ 1− ‖xi − xj‖r /σ2, Gij ≥ 0.

If yiyj < 0, then we use the well-known equation
max (0, w) = w/2 + |w/2| .
Second, in order to represent the absolute values,
we use interesting results proposed by Beaumont [2].
According to [2], if we know some interval of val-
ues [w,w] ⊂ R of a variable w, then we can write
∀w ∈ [w,w], |w| ≤ uw + v, where

u = |w| − |w|
w − w , v = w|w| − w|w|

w − w .

6 Conclusion Remarks

New classification algorithms dealing with interval-
valued training data have been proposed in the pa-
per. A part of proposed algorithms using the trian-
gular kernel instead of the Gaussian kernel comes to
a finite set of simple linear programming problems
whose solution does not meet difficulties. Another
part using the triangular kernel comes to a finite set
of quadratic programming problems whose solution
are implemented by many standard procedures. The
third part of algorithms is based on quadratically con-
strained linear programs which can be solved by using
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the package “cplexAPI” available in several program-
ming languages, for instance, in R-project.

It is important to note that the proposed algorithms
indirectly find “optimal” points of intervals correspond-
ing to the robust or maximin decision strategy. How-
ever, they fundamentally differ from the algorithm
using some point-valued counterpart of intervals. The
obtained “optimal” points of intervals are optimal in
the sense that they maximize the expected classifica-
tion error or risk if we apply the robust or maximin
strategy. These “optimal” points compose a single
probability distribution among a set of distributions
produced by intervals in the framework of Dempster-
Shafer theory.

Of course, all algorithms have a bottle neck which is
their complexity. However, the proposed algorithms
should not be used when a training set is large and
intervals are rather small. Moreover, the algorithms
based on the L2-norm SVM should be used when the
number of features is small. At the same time, the
algorithms based on the L∞-norm SVM do not depend
on the number of features. It does not mean that the
value m does not impact on the complexity of these
algorithms. One can see from constraints (21) that
the number of constraints strongly depends on m.

Finally, we have to stress on the main idea allowing
us to construct the above algorithms. This is the
replacement of the Gaussian kernel by the triangular
and Epanechnikov kernels. This idea can be also
used for constructing the support vector regression
algorithms when dependent as well as independent
variables are interval-valued.
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