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Abstract
A statistical model can be constructed from a null
probability measure by defining a set of statistics rep-
resenting log-likelihood ratios of alternative measures
to the null measure. Conversely, any model consist-
ing of equivalent measures can be so expressed. A
linear combination of statistics will also define a log-
likelihood ratio if the normalizing constant is finite. In
this way, any such model can be naturally extended to
a convex subset of the linear span of these statistics. A
finite dimensional subset defines an exponential family
with the canonical parameters of a measure defined
by coordinates relative to a set of basis functions.

Given a base measure on the parameter space, one can
implement a similar structure with a set of parametric
functions. The log-likelihood itself being a parametric
function, the set of all possible log-likelihoods thus
defines a space of measures conjugate to the statisti-
cal model. The conjugate space will have one more
dimension spanned by the above-mentioned parameter-
dependent normalizing constant.

If the base measure is considered a prior distribution,
then the translation by the observed log-likelihood
defines the posterior. An imprecise prior defined by a
set of measures is in the same manner translated to a
set of posterior measures. Upper and lower previsions
can then be computed as extrema over this posterior
set.

Keywords. Information geometry, exponential fam-
ily, sets of measures.

1 Introduction

Statistical inference deals with observations that are
realizations of a random process whose probability law
is postulated to be one of a set of probability laws. We
call this set the model space. Bayesian inference also
requires a probability measure defined on the model
space indexed by a set of parameters such that the

distribution of the observations is viewed as being con-
ditional on an unobserved realized parameter. Bayes’
rule is then used to combine the prior distribution
on the model space with the observation to give a
posterior distribution on the model space, which will
hopefully be more informative than the prior. This
procedure is called Bayesian updating, but in the com-
puter science community it is also known as learning
from data, a terminology that is more descriptive of
what is actually happening.

While Bayesian inference is based on a solid mathe-
matical foundation, its use has been much criticized as
being an improper method for scientific investigation
(see Mayo [10] for an overview). One of the criticisms
relates to the arbitrariness of the prior distribution.
The subjectivity reflected in the prior seems out of
place in the objectiveness of science. Even if one
acknowledges that all inference relies on prior assump-
tions that are inherently subjective, there remains the
practical issue of enunciating these assumptions suf-
ficiently precisely to define a probability distribution
on the model space.

These criticisms were addressed in Walley’s fundamen-
tal treatise [14]. Walley introduces the concepts of
lower and upper previsions on a set of gambles. In
more conventional language, gambles are just random
variables, and the term prevision (borrowed from de
Finetti [6]), is essentially an expectation. Walley’s nov-
elty is in allowing the prevision to be defined on only
a subset of random variables, thus providing for an
incomplete description of a prior probability distribu-
tion which is more realistic than the classical Bayesian
requirement. Moreover, Walley posits so-called upper
and lower previsions which are merely bounds on the
expectations, thereby further providing for incomplete
knowldege, freeing one from having to specify a pre-
cise number as the prior expectation of any random
variable. When applied to indicator variables, upper
and lower previsions define upper and lower proba-
bilities. Walley’s development however is constrained
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by the assumption that gambles are bounded. The
case of unbounded gambles is discussed by Troffaes
and de Cooman [13].

Walley’s lower envelope theorem [14, Section 3.3.3]
shows that if the upper and lower previsions satisfy
coherence axioms, then they can be expressed in terms
of conventional expectations: One can find a set of
probability measures (dubbed credal set by Levi [9])
with corresponding expectation functionals, such that
the lower prevision is the infimum of all expectations
over the set, and the upper prevision is the supremum.
Thus working with upper and lower previsions is equiv-
alent to replacing probability measures with sets of
probability measures.

Inference can now be based on such imprecise prior
probabilities. Walley proposed a generalized Bayes’
rule in which imprecise prior probabilities are updated
to imprecise posterior probabilities. The posterior
probabilities would then be expected to be more precise
than the priors in the sense that the difference between
upper and lower probabilities is reduced. Walley [15]
also introduced the imprecise Dirichlet model (IDM)
for learning from multinomial data, in which the priors
are defined as a set of Dirichlet distributions with a
fixed concentration parameter s, and the posteriors are
Dirichlet distributions with s increased by the sample
size.

Diaconis and Ylvisaker [5] discussed the process of
Bayesian updating in exponential families. When the
model space is an exponential family, then one can
define a conjugate exponential family of prior distri-
butions (indexed by hyperparameters) on the model
parameters such that Bayesian updating can be ex-
pressed as a data induced change in the hyperparam-
eters. Moreover, under certain regularity conditions,
the predictive expectations of the canonical sufficient
statistics can be expressed as a weighted average of
prior expectation and sample mean.

Since the multinomial and Dirichlet distributions are
conjugate in the sense of Diaconis and Ylvisaker, Wal-
ley’s IDM can be viewed as an imprecise probability
version of their setup. Imprecise versions of other ex-
ponential families have been proposed by Quaeghebeur
and de Cooman [12], Quaeghebeur [11], Bickis [4], Be-
navoli and Zaffalon [3], Bataineh [2], and Lee [8]. The
problematic step in all these situations is determining
a set of priors. One wants a set sufficiently large such
that previsions are near-vacuous a priori but not so
large that learning from data is not possible. Such a
set of priors will be said to have the Benavoli-Zaffalon
(BZ) property as discussed in their paper [3].

In this paper, we consider a geometric representation
of model and prior probabilities in which the idea

of conjugacy is extended beyond that considered by
Diaconis and Ylvisaker. Using canonical parameteri-
zations, Bayes’ rule can be seen as a data-dependent
translation of a point representing the prior distribu-
tion. The generalized Bayes rule can similarly be seen
as a translation of an entire set. We can thus visualize
how various choices of prior set affect the process of
learning from data. We present several examples to
illustrate various situations that arise in this paradigm.
In most of these examples we consider the effect of a
single observation. The effect of i.i.d. samples should
then be viewed as iterations of the updating paradigm,
illustrating the effect of accumulating information.

2 Geometry of Probability Measures

Let Y be an observation space whose elements rep-
resent possible empirical observations. We make few
assumptions about the structure of this space; ele-
ments may be numeric or nominal, scalar or vector of
finite or infinite dimension. All we require is that we
are able to specify a probability measure P0 on some
σ-algebra of events defined on Y. We are interested
in making an inference about the probabilistic nature
of Y and may think of P0 as a null model which we
wish to compare with some other putative measure P1.
We will assume that no deterministic inference is pos-
sible, i.e., that any event that is possible (with positive
probability) under one measure is similarly possible
under another. In the language of probability theory,
P0 and P1 are equivalent measures: P0 ∼ P1.

2.1 One-Dimensional Case

The likelihood principle implies that any inference
concerning P1 vs. P0 is based solely on the likelihood
ratio, which is convenient to express in its logarithmic
form:

` = log dP1
dP0

, (1)

from which it follows that we can write

P1(A) =
∫

1Ae` dP0 (2)

where 1A represents the indicator function of a mea-
surable subset A of Y. By introducing a scalar pa-
rameter θ, we can define one-dimensional exponential
family P = {Pθ : θ ∈ Θ} where

Pθ(A) =
∫

1A exp(θ`− φ(θ)) dP0, (3)

φ(θ) = log
∫
eθ` dP0, (4)

and
Θ = {θ ∈ R : φ(θ) <∞}. (5)
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Theorem 1 Θ is a convex set.

Proof: If θ1, θ2 ∈ Θ and 0 < α < 1 then

eφ(αθ1+(1−α)θ2) =
∫
eαθ1`e(1−α)θ2` dP0.

By Hölder’s inequality, this is less than
(∫ (

eαθ1`
)1/α

dP0

)α(∫ (
e(1−α)θ2`

)1/(1−α)
dP0

)1−α

= φ(θ1)αφ(θ2)1−α.

Since φ(θ1) and φ(θ2) are both finite by definition, so is
φ(αθ1 + (1− α)θ2), and the result follows. �

Instead of postulating an alternative probability
model P1, we may start with a random variable (i.e.,
measurable function) v on Y that we think encapsu-
lates the inference we are interested in making. In
the same fashion we may define a one-dimensional
exponential family

Pθ(A) =
∫

1A exp(θv − φ(θ)) dP0, θ ∈ Θ (6)

where φ and Θ are defined as before in (4) and (5).

Definition 1 The family P = {Pθ : θ ∈ Θ} de-
fined by ( (6)) will be called the family generated by v
(over P0).

Definition 2 For any random variable T , Eθ(T ) is
defined as

Eθ(T ) =
∫
T dPθ =

∫
Teθv−φ(θ) dP0.

Theorem 2 If θ1 6= θ2 then Pθ1 6= Pθ2 iff v is not
almost surely constant.

Proof:

Pθ1 = Pθ2 ⇐⇒ P0
{
eθ1v−φ(θ1) = eθ2v−φ(θ2)} = 1

which is equivalent to

(θ1 − θ2)v = φ(θ1)− φ(θ2) a.s. (7)

Since the right side of (7) is constant, this equality can
hold only if v is almost surely constant or if θ1 = θ2. On
the other hand, if v is almost surely constant, then

φ(θ) = log
∫
eθv dP0 = θv a.s (8)

and thus (7) holds. �

If v is almost surely constant, then Pθ = P0 for all θ.
On the other hand, if

∫
eθv dP0 =∞ for all θ 6= 0, (9)

then Θ consists of a single point. In either case the
family generated by v has but a single probability
measure and provides no prospect for inference. In
the following we will assume that v is not constant
and that

∫
exp(θ1v) dP0 <∞ for at least one θ1 6= 0.

By Theorems 1 and 2, Θ will then include an interval
with endpoint θ1, with distinct θ’s corresponding to
distinct probability measures.

Theorem 3 If v1 and v2 are random variables on Y
such that v1 − v2 is almost surely constant, then for
any θ ∈ Θ, v1 and v2 define the same probability
measure and hence v1 and v2 generate the same family.

Proof: Let

φi(θ) = log
∫
eθvi dP0, i = 1, 2.

Then

φ2(θ) = log
∫
eθv1eθ(v2−v1) dP0

= φ1(θ) + θ(v2 − v1) a.s. (10)

For any event A, θ ∈ Θ, the probability defined by v1 is
∫

1Aeθv1−φ1(θ) dP0 =
∫

1Aeθv2−(φ1(θ)+θ(v2−v1)) dP0,

(11)

=
∫

1Aeθv2−φ2(θ) dP0, (12)

by (10). �

The random variable v may thus differ from a log
likelihood ratio by an arbitrary constant. We can
make the representation (6) unique by requiring that

∫
v dP0 = 0. (13)

Since
θv = log dPθ

dP0
+ φ(θ),

the convention (13) implies that

φ(θ) =
∫

log dP0
dPθ

dP0. (14)

The right side of (14) was described by Kullback [7]
as the mean information for discrimination in favour
of P0 against Pθ and is one way of quantifying the
ease with which a probability measure Pθ can be
distinguished from P0. It is commonly called the
Kullback-Leibler information or divergence [1] and de-
noted by I(P0|Pθ). The divergence may be viewed as
the distance from P0 to Pθ, although it does not sat-
isfy the axioms of a metric.1 A significant property of

1While I(P0|Pθ) > 0 iff P0 6= Pθ, it is not symmetric, does
not satisfy the triangle inequality and may even be infinite.
However, it can be shown that I(P0|Pθ) < ∞ when θ is in the
interior of the set (5).

The geometry of imprecise inference

49



divergence is additivity over independent observations.
Let P (1,2)

θ = P
(1)
θ × P (2)

θ be the joint distribution of
two independent observations with distributions P (1)

θ

and P (2)
θ . Then

I(P (1,2)
0 |P (1,2)

θ ) = I(P (1)
0 |P

(1)
θ ) + I(P (2)

0 |P
(2)
θ ). (15)

The requirement (13) makes the representation unique,
and relates the normalizing constant φ to the diver-
gence.

The set of random variables forms a vector space, and
the representation (6) identifies a family of probability
measures with a convex subset of a one-dimensional
subspace, the origin representing the null measure P0.
The function v is a basis vector such that all proba-
bility measures in the family can be represented as
scalar multiples of v, the scalar being the parameter θ.
Because of the need of a normalizing constant φ(θ),
the log-likelihood ratios actually do not lie in a one-
dimensional subspace, but in a two-dimensional sub-
space spanned by v and the constant function 1 equal
to 1 everywhere. A probability measure Pθ actually
corresponds to an equivalence class of vectors differ-
ing by a multiple of 1. The convention (13) picks a
particular representative of the equivalence class.

We illustrate these ideas with an almost trivial exam-
ple.

Example 1. Let Y = {0, 1} with P0{0} = P0{1} = 1
2

and P1{0} = 1 − P1{1} = 1 − p for some p ∈ (0, 1).
Then

dP1
dP0

(0) = (1− p)
/ 1

2
dP1
dP0

(1) = p
/ 1

2

so that
dP1
dP0

(y) = 2(1− p)1−ypy

log dP1
dP0

= log 2 + (1− y) log(1− p) + y log p

= log p

1− p y + log 2 + log(1− p).

putting v(y) = y − 1
2 and θ = log(p/(1− p)) we have

that

log dP1
dP0

= θv + θ/2 + log 2− log(1 + eθ)

= θv − log
(

1 + eθ

2eθ/2

)

= θv − log cosh(θ/2). (16)

The family of binary distributions is thus dis-
played in the form (6) parametrized by the log-
odds θ = log(p/(1− p)) with

φ(θ) = I(P0|P1) = log cosh(θ/2).

3
-4 -3 -2 -1 0 1 2 3 4

-?
(3
)

-1

0

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
3
{1}

Figure 1: Probability manifold for binary distributions.
The set of measures forms a one-dimensional manifold
in the plane. The distance in the vertical directions
represents the divergence from the uniform distribu-
tion. The points in the manifold can be projected in
this direction onto the tangent plane. Location along
the plane is linear in the canonical parameter θ, but
non-linear in the success probability p.

The set of all functions on {0, 1} is two-dimensional,
being isomorphic to R2. The representation (16) iden-
tifies those functions that are log-likelihood ratios rela-
tive to uniform probabilities. Using a basis consisting
of the functions v0(y) = 1 and v1(y) = y − 1

2 , the
set of log-likelihood ratios (equivalently, probability
measures) can be visualized as in Figure 1. In this
figure, the equivalence classes correspond to vertical
lines.

Example 2. Suppose now that we have n i.i.d. ob-
servations y1, . . . , yn from Example 1. Let P0,n (resp.
P1,n) represent the joint distribution of n i.i.d. bi-
nary observations with success probability 1

2 (esp. p).
Again, let θ = log(p/(1− p)). The joint log likelihood
of independent observations is the sum of the log like-
lihoods, and by (15) the same will be true for the
divergences. Thus adding terms of the form (16) we
get

log dP1,n
dP0,n

(y1, . . . , yn) = θ

(
n∑

i=1
yi −

n

2

)
−n log cosh θ2 ,

(17)
which is the canonical form of the binomial family. Al-
ternatively, let Y be the set of all 2n binary sequences
and P0 be the uniform measure on this set. Then if
we decide that inferences are to made solely on the
basis of the function v(y1, . . . , yn) =

∑
i yi, the family

generated by v is again binomial. The picture of this
family is just a rescaling of Figure 1 and thus has
the same intrinsic geometry. This geometric equiv-
ariance under repeated sampling is characteristic of
exponential families.

Example 3. Let Y = R+, and define P0 by the
cumulative distribution function

P0((0, y]) = 1− e−y, y > 0,

M. Bickis
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then with v1(y) = y − 1 the one-dimensional exponen-
tial family is

log dPθ
dP0

= θv1 − φ(θ) (18)

where

φ(θ) = I(P0|Pθ) = −θ − log(1− θ).

The natural parameter space is Θ = (−∞, 1) which
defines the family of exponential distributions with
expectation (1− θ)−1.

2.2 Multidimensional Case

The inference of interest may not be expressible in
terms of a single function v; we may require a fam-
ily of functions L0, in which case a construction as
in (3) is possible for any v ∈ L0. Indeed, for any
finite number of functions v1, . . . , vk ∈ L0 and scalar
parameters θ1, . . . , θk we can construct a probability
measure

Pθ(A) = Pθ1,...,θk
(A)

=
∫

1A exp
(

k∑

i=1
θivi − φ(θ)

)
dP0 (19)

provided that

φ(θ) = log
∫

exp
(∑

i

θivi

)
dP0 <∞. (20)

Thus a given set L0 of functions can be augmented by
their linear combinations, the set L of all such linear
combinations forming a vector space. In that case we
have a generalization of Definition 1:

Definition 3 Given a set L0 of random variables, the
set of probability measures defined by (19) and (20)
will be called the family generated by L0.

If for a fixed set of functions v1, . . . , vk every function
in L can be uniquely expressed as a linear combination
of v1, . . . , vk, then L will be a k-dimensional vector
space and v1, . . . , vk will be basis vectors. The vector
space will be infinite dimensional if no such finite basis
can be found.2 We focus on the finite-dimensional
case. Here it is convenient to fix a basis v1, . . . , vk
and consider θ> = (θ1, . . . , θk) representing the mea-
sure Pθ as a row vector and the values v1(y), . . . , vk(y)
as a column vector v. Then the vectors of parameters

2If L spans an infinite-dimensional space, then a basis might
be impossible to find, even if its existence is implied by the
axiom of choice.

and statistics act on each other via matrix multiplica-
tion. Thus, the family generated by v1, . . . , vk can be
represented as

P = {Pθ : θ ∈ Θ} where (21)

Pθ(A) =
∫

1Aeθ>v−φ(θ) dP0 (22)

Θ = {θ ∈ Rk : φ(θ) =
∫
eθ>v dP0 <∞}. (23)

As in the one-dimensional case, the log likelihood ra-
tio may differ by a constant from a function in L.
Thus if L is k-dimensional with basis v1, . . . , vk, the
set of log-likelihood ratios lies in a k + 1-dimensional
space spanned by v0, v1, . . . , vk, where v0 = 1. Again,
two functions that differ by a scalar multiple of 1
will define the same probability measure, and we can
consider probability measures to correspond to equiv-
alence classes of functions. To make the represen-
tation (22) unique we add the additional constraint
that E0(vi) = 0 for every i ≥ 1, which again will
specify a representative of the equivalence class. In
that case the normalizing constant φ(θ) = I(P0|Pθ)
as discussed before. Uniqueness also requires that the
functions v0, v1, . . . , vk are linearly independent when
restricted to the support of P0.

With these additional conditions, for each Pθ ∈ P
, log dPθ/dP0 corresponds to a unique
point (−I(P0|Pθ), θ1, . . . , θk) in Rk+1. The set
of probability measures thus defines a k-dimensional
manifold
M = {(−I(P0|Pθ), θ1, . . . , θk) : I(P0|Pθ) <∞}

(24)
embedded in Rk+1. This manifold can be projected
one-to-one onto its tangent plane at the origin, giving
the natural parameter space3

Θ = {θ : I(P0|Pθ) <∞} (25)
which is a convex subset of Rk.

The family of normal distributions is a well-known
example:

Example 4. Let Y = R, and let P0 be the standard
normal distribution.

P0(A) = 1√
2π

∫
1Ae−y

2/2 dy,

and define v1(y) = y, v2(y) = y2 − 1. The representa-
tion (19) gives

log dPθ

dP0
= θ1y + θ2(y2 − 1)− I(P0|Pθ)

3This is slightly more restrictive than the usual definition,
which only requires the finiteness of φ(θ) and not of its particular
version I(P0|Pθ).
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Figure 2: Probability manifold for the Gaussian family,
with tangent plane at P0 = N(0, 1). The tangent plane
is ruled with coordinate lines corresponding to mean
and variance.

where Θ = {(θ1, θ2) ∈ R2 : θ2 < 0}. This
can be seen to be a Gaussian distribution with
mean µ = −θ1/(2θ2) and variance σ2 = −1/(2θ2).

Example 5. Consider now the setup of Example 3
but with the observation is right-censored at T . This
means that if y > T then one actually observes y = T .
Now

P0((0, y]) =
{

1− e−y 0 < y < T,
1 y ≥ T.

so that the distribution is no longer continuous but
has an atom, i.e., point of positive probability, at T .

Now let Pϑ be an exponential distribution with
mean (1 − ϑ)−1 also censored at T . Then the log
likelihood ratio is

` = log dPθ
′

dP0
=
{
θ′y + log(1− θ′) 0 < y < T,
θ′T y ≥ T.

The one-dimensional family generated by ` now has
natural parameter space (−∞,∞), but only P0 and Pϕ
represent censored exponential distributions.4 To
model a family of censored exponential distributions,
we need to introduce a second function δ = 1y<T . For
any exponential distribution censored at T we can now
write

log dPθ
dP0

= θ1v1 + θ2v2 − φ(θ1, θ2). (26)

4Each of the members of the family is a mixture of a trun-
cated exponential distribution and a point mass at T , but the
probability of the point mass in most cases is different from that
given by censoring.

The canonical representation with φ(θ1, θ2) =
I(P0|Pθ1,θ2) would require that

v1(y) = y − E0(y) = y − (1− e−T ) (27)
v2(y) = δ − E0(δ) = δ − (1− e−T ). (28)

φ(θ1, θ2) = I(P0|Pθ1,θ2)

= log
(
e(θ1−1)T + (θ1 − 1)e(θ2−1)T−θ2

)

− log(θ1 − 1) + θ2

− (θ1 + θ2)
(
1− e−T

)
.

Exponential distributions censored at T form a one-
dimensional non-linear manifold, defined by

{(θ1, θ2) : θ2 = log(1− θ1)},

in this two-dimensional exponential family. Such a
family is called a curved exponential family[1]. Re-
stricted to this submanifold, we have

I(P0|Pθ1,θ2) = −(θ1 + θ2)(1− e−T ),

which in this instance is a linear function of the canon-
ical parameters.

3 Geometry of Inference

3.1 Precise Priors

Suppose now that we express our prior uncertainty
about the model by a probability measure Π0 defined
on a suitable σ-algebra of subsets of P.
Denote by π0 the density of Π0 (considered as a mea-
sure on P) with respect to some dominating measure λ.
Then if the likelihood is given by (21) and an observa-
tion y is observed, Bayes’ rule will give the posterior
density

πy(v) = π0(θ) exp(θ>v(y)− I(P0|Pθ))∫
π0(ϑ) exp(ϑ>v(y)− I(P0|Pϑ)) dλ(ϑ) ,

(29)
where v(y) is the vector (v1(y), . . . , vk(y))>. If we
take the log ratio of posterior to prior, we get

log dΠy

dΠ0
(v) = θ>v− I(P0|Pθ)− ψ(y) (30)

where

ψ(y) = log
∫

exp
(
θ>v− I(P0|Pθ)

)
dΠ0(v). (31)

The set of possible posteriors (30) is of the same ex-
ponential form as (19) where the roles of parameter
and function are reversed.
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Let L∗ be the vector space of functions v∗ : P → R
spanned by

v0 : P 7→ −I(P0|P ) and (32)
vi : (Pθ1,...,θk

) 7→ θi i = 1, . . . , k. (33)

For brevity, denote by v∗ the row vector
(v0(P ), v1(P ), . . . , vk(P ))>.

Now given a vector η = (η0, η1, . . . , ηk) of hyperparam-
eters we can now define analogously to (19) for any
measurable set W of measures in P

Πη(W ) =
∫

1W exp
(

k∑

i=0
viηi − ψ(η)

)
dΠ0. (34)

This will define a probability measure on P provided
that

ψ(η) =
∫
ev
∗η dΠ0 <∞. (35)

Definition 4 The conjugate hyperparameter space Θ∗
is the set of all η ∈ Rk+1 such that (35) holds.

Definition 5 The space of measures P∗ conjugate 5

to the family P is the set {Πη : η ∈ Θ∗}.

By definition, P∗ includes the prior distribution and
all possible posteriors (but is generally much larger).
Moreover, if a posterior distribution is in P∗, then a
proper prior from which it was updated must also be
in P∗.

Theorem 4 If a prior distribution Πη in P∗ has hy-
perparameters

η = (η0, η1, . . . , ηk)

then after observing y the posterior distribution will
have hyperparameters

(η0 + 1, η1 + vi(y), . . . , ηk + vk(y)).

Proof: The density of the prior Π is dΠ/dΠ0 = exp(v∗η−
ψ(η)). By Bayes’ theorem, the posterior density is

dΠy

dΠ0
= ev∗η−ψ(η)eθ>v(y)−I(P0|Pθ)
∫
ev∗η−ψ(η)eθ>v(y)−I(P0|Pθ) dPθ

(36)

By definition,

v∗(Pθ) = (−I(P0|Pθ), θ1, . . . , θk)

so the numerator of (36) becomes exp
(
v∗(η + (1,v(y))

)
,

and the denominator becomes ψ(η + (1,v(y)). �

5This definition is more general than that of Diaconis and
Ylvisaker. Their construction would follow from using a (possi-
bly improper) Lebesgue prior for Π0.

The transformation from prior to posterior by an obser-
vation y can be represented in Θ∗ as a translation by
the vector (1, v1(y), . . . , vk(y)) is a translation by the
vector y∗−v0. Note that the translation is the same for
all priors. Even improper priors can be accommodated
by going outside Θ∗.

3.2 Imprecise Priors

Because the translation in Θ∗ is the same for all priors
(proper or improper), one can update a set of priors
simply by translating the whole set. This provides a
convenient way of representing updating of imprecise
priors, as the set of hyperparameters for the posteriors
is congruent to the set of prior hyperparameters.

It is often of interest to predict the value of some future
observation, by the posterior expectation of a random
variable v ∈ L. With a precise prior distribution Π0,
this would be computed as

v̂ =
∫ ∫

v(z) dPθ(z) dΠy(θ).

If instead of a precise prior, we have a set of priors Π0
leading to a set of posteriors Πy, then we compute
lower and upper previsions as

v = inf
Π∈Πy

∫ ∫
v(z) dPθ(z) dΠ(θ) (37)

v = sup
Π∈Πy

∫ ∫
v(z) dPθ(z) dΠ(θ). (38)

If the conjugate family is of the type discussed by
Diaconis and Ylvisaker, and if v ∈ L, then the sets
of constant predictive expectation v̂ form hyperplanes
in L∗ that intersect in a subspace containing the im-
proper Lebesgue prior. In this case the lower and
upper previsions (37) and (38) are given by the sup-
porting hyperplanes of the convex hull of the posterior
set, which thus can, without loss of generality, be taken
to be convex. If the prior set intersects all of these
diverging hyperplanes, then the prior prediction is
vacuous. As data are observed, the prior set is shifted
such that it no longer intersects all the hyperplanes,
and non-vacuous prediction can be made.

Definition 6 A set of priors will be said to have the
Benavoli-Zaffalon (BZ) property relative to the func-
tion v if v > inf v and v < sup v in (37) and (38)
for some observation y, but v = inf v and v = sup v
when Πy is replaced by the prior set Π0.

Example 6. Consider the setup in Example 1. For Π0
take a logistic distribution of θ (which is equivalent to
a uniform on p = (1 + exp(−θ))−1):

dΠ0
dλ

(θ) = eθ

(1 + e−θ)2 . (39)
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Define v∗0 , vii∗1 ∈ L∗ by

v∗0(θ) = − log cosh(θ/2)
v∗1(θ) = θ/2

It can be shown that

Θ∗ = {η1f
∗
1 + η0f

∗
2 : |η1| < 1 + η2/2}.

Plotting the basis vector v∗0 horizontally and v∗1 verti-
cally, the set of proper priors and posteriors is defined
by the wedge-shaped region in Figure 3. The update
rule for a single binary observation y can be expressed
as

η0 7→ η0 + 1 (40)
η1 7→ η1 + y − 1

2 (41)

Given any point representing a prior, the posterior
after a single observation is obtained by moving one
step to the right, a half-step up for a success, a half-
step down for a failure. A sequence of independent
observations then traces a path in the hyperparameter
space.

Sets of constant prediction of v = y − 1
2 form rays

emanating from η0 = −2, η1 = 0 (Figure 3). (The
intersection of these rays is not in Θ∗ but represents
an improper prior.) From this picture, one can vi-
sualize which sets of priors will have the Benavoli-
Zaffalon property. For example, Walley’s imprecise
beta model (IBM) gives a prior set corresponding to

{(η0, η1) : η0 = s, |η1| < s/2}, (42)

where s is taken to be 1 or 2. The prior predictions
are thus v = 0 and v = 1. After taking observations,
the prior set has moved such that it is contained in a
narrow cone of rays, leading to informative upper and
lower previsions.

Example 7. If the data are N(µ, 1), then
the conjugate prior family would be N(ν, σ2) which
can be reparametrized in canonical exponential form
by η0 = 1/2σ2 and η1 = ν/σ2. If we choose Π0 ∼
N(0, 1) then Θ∗ = (−1,∞) × (−∞,∞). Sets of con-
stant predictive expectation are again rays emanating
from (−1, 0) (Figure 4). Note that η0 again repre-
sents a concentration parameter. Unlike the case of
the IBM, fixing the set of priors by fixing the con-
centration parameter does not allow for learning from
data, as the interval of posterior predictions remains
infinite. Benavoli and Zaffalon [3] suggested using a
set of priors which in the present parametrization is
the rectangular region in Figure 4 which satisfies the
BZ-property.

Example 8. Let the model space be as in Exam-
ple 6 but define Π0 as a Gaussian distribution on Θ.

-3-2-101

20
-2 0 2 4 6

2
1

-5

0

5

Figure 3: Path of sets of posteriors from IDM
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Figure 4: Set of posteriors from Normal distribution,
using prior set suggested by Benavoli
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Figure 5: Contour sheets showing sets of constant
predictions for the logit-normal model.

The same construction applies, but in this case the
conjugate family is not conjugate in the sense of Di-
aconis and Ylvisaker. The 2-dimensional exponen-
tial family created from a N(µ, σ2) prior is spanned
by θ and cosh(θ/2). Nonetheless, similar arguments
still allow for learning from data. If we start with a
set of N(µ, σ2) priors for various σ2, we obtain a 3-
dimensional family of posteriors spanned by cosh(θ/2),
θ and −θ2. The update rules for η0 and η1 are the
same as in (41), but η2, the coefficient of −θ2, is not
changed.

There seems to be no explicit formula for the nor-
malizing constant ψ, nor for the predictive expecta-
tions. Nonetheless, such quantities can be computed
numerically. As shown in Figure 8, the level sets of
predictive expectations appear as a set of almost flat
sheets pinched together at the origin. The limiting
case η2 = 0 is equivalent to the conjugate family in
Example 6. The path traced by a sequence of observa-
tions is as in Figure 3, raised by η2 = 1/(2σ2) in the
prior distribution. A set of priors with the Benavoli-
Zaffalon property can be obtained by including in its
boundary a set of the type in (42).

Example 9. Consider now the censored exponential
model of example (5). While the “natural” parameter
space is two-dimensional, we are only concerned with
models on the one-dimensional manifold θ2 = log(1 +
θ1). We thus take as Π0 the singular distribution
concentrated on this manifold such that that θ1 has
an exponential distribution with mean 1. (Note that

in this case the dominating measure λ is not Lebesgue
measure.) The conjugate space of posteriors then takes
the form

log dP0
dΠη1,η2

= θ1η1 + θ2η2 − ψ(η1, η2)

where

ψ(η1, η2) = (η2 + 1) log(η1 + 1)− Γ(η2 + 1)

The natural hyperparameter space is {η1 > −1, η2 >
−1}. In this case the family is only two-dimensional be-
cause of the linear dependence between φ and (θ1, θ2).

The Bayesian updating rule is

η1 7→ η1 + y

η2 7→ η2 + δ,

moving to the right by the observed lifetime and one
step up if the lifetime is not censored. This setup still
works if we allow T itself to vary with time. The hy-
perparameter keeps moving right while the individual
is alive (i.e., censored) and then jumps up one step
once a death is observed.

The posterior predictive expectation of the uncen-
sored lifetime is (η1 + 1)/η2. To create an impre-
cise inference, we can start with the hyperparameter
set {η2 > 0, η1 +η2} = 0. Initially, the predictive lower
prevision is 0, and the predictive upper prevision is ∞.
If an individual is observed to be alive at time y, the
lower prevision rises to y, but the upper prevision
remains at ∞. Once the individual is observed to
die at y, the upper prevision drops to 1 + y and the
lower prevision drops to y/2. If one observes a set of
independent lifetimes, then this process compounds.
If t is the total of observed lifetimes and d is the total
number of observed deaths, then the lower prevision
is t/(d+ 1) and the upper prevision is (t+ 1)/d. This
set of priors again has the Benavoli-Zaffalon property
(Figure 3.2).

4 Conclusions

In this paper we have shown how an exponential family
of probability measures is generated by postulating a
null distribution and a set of inferential functions. If
the set of functions is k-dimensional, then the family of
probability measures forms a k-dimensional manifold
embedded in k + 1-dimensional Euclidean space. This
manifold can be uniquely projected onto a tangent
plane whose coordinates parametrize the model. If a
prior distribution is defined on the set of probability
distribution, then the above development can be re-
peated with the parametric functions, thus giving an
exponential family that includes all possible posteriors.
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Figure 6: Imprecise updating of censored exponential
survival times, showing the prior set, the set after
an observation censored at time 2, and the set after
observing a death after another time unit. The rays
are level sets for predicted uncensored lifetimes.

This family can again be projected onto a tangent
space of hyperparameters.

In this representation, Bayesian updating of a hyper-
parameter is expressed as a translation by a data-
dependent vector. This same translation can be ap-
plied to a set of hyperparameters, demonstrating the
updating of imprecise priors to imprecise posteriors.
The geometric perspective allows one to see when a set
of priors would enjoy the Benavoli-Zaffalon property
of near vacuous priors that allow for learning from
data.

This paper concentrates on the linear aspects of
the space of measures, and does not further explore
the metric aspects of the geometry implied by the
Kullback-Leibler information measure. These topics
will be examined in future papers.
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