On the Complexity of Propositional and Relational Credal Networks

Fabio G. Cozman Denis D. Mauá Universidade de São Paulo – Brazil

Goal: to study the relationship between

complexity in Boolean specification language credal networks. and

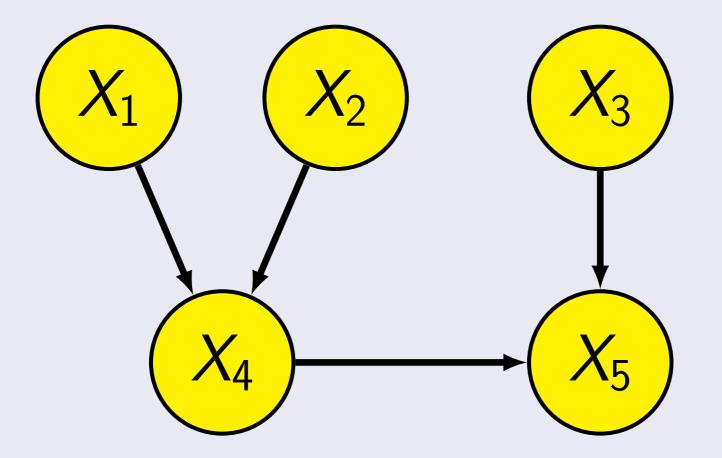
Propositional credal networks: Results

Theorem: $INF_d^+(Prop(\land, (\neg)))$ is polynomial.

Theorem: $INF_d^+(Prop(\land,\lor,(\neg)))$ is NP^{PP} -complete.

Credal networks

Directed acyclic graph, where each node is a random variable with associated "local" credal sets, with associated Markov condition.



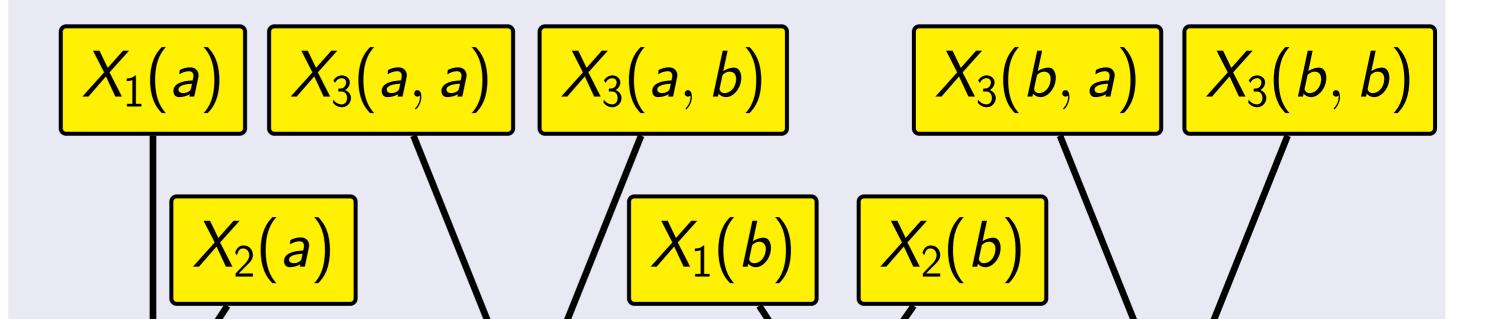
• We focus on the *strong extension*:

$$\left\{\mathbb{P}:\mathbb{P}(\mathbf{X}=\mathbf{x})=\prod_{i=1}^{n}\mathbb{P}(X_{i}=x_{i}|\mathrm{pa}(X_{i})=\pi_{i})
ight\}.$$

Relational credal networks

Extend: parameterized variables, with logical variables over (finite) domains. Example[.]

$$\begin{array}{l} \mathbb{P}(X_1(x) = 1) \geq 1/2, \\ \mathbb{P}(X_2(x) = 1) \in [1/4, 1/3], \\ \mathbb{P}(X_3(x, y) = 1) = 1/5, \\ X_4(x) \Leftrightarrow X_1(x) \wedge X_2(x), \\ X_5(x) \Leftrightarrow \forall y : X_3(x, y) \wedge X_4(y). \end{array}$$
with domain $\mathcal{D} = \{a, b\}$:



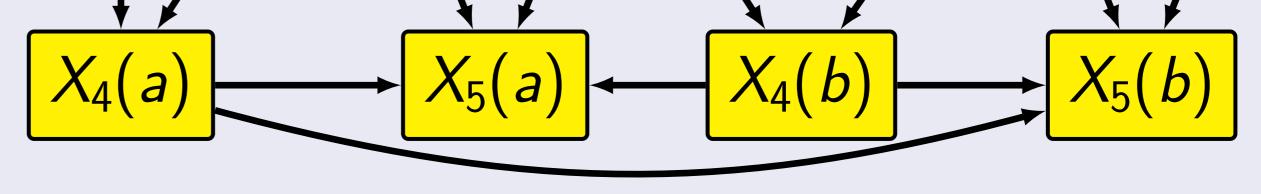
Complexity

• Marginal inference: $\mathbb{P}(\mathbf{X}_Q = \mathbf{x}_Q | \mathbf{X}_E = \mathbf{x}_E) > \gamma$? INF_d(C): the inference problem for a class C of networks; $\mathsf{INF}_d^+(\mathcal{C})$ when evidence is positive. In Bayesian networks: PP-complete problem. In strong extensions: NP^{PP}-complete problem.

Specification framework: Propositional

Associate, with each (Boolean) variable X, either • Equivalence $X \Leftrightarrow F(Y_1, \ldots, Y_m)$, where F is a sentence in some formal language. Assessment $\mathbb{P}(X = \text{true}) \in [\alpha, \beta]$.

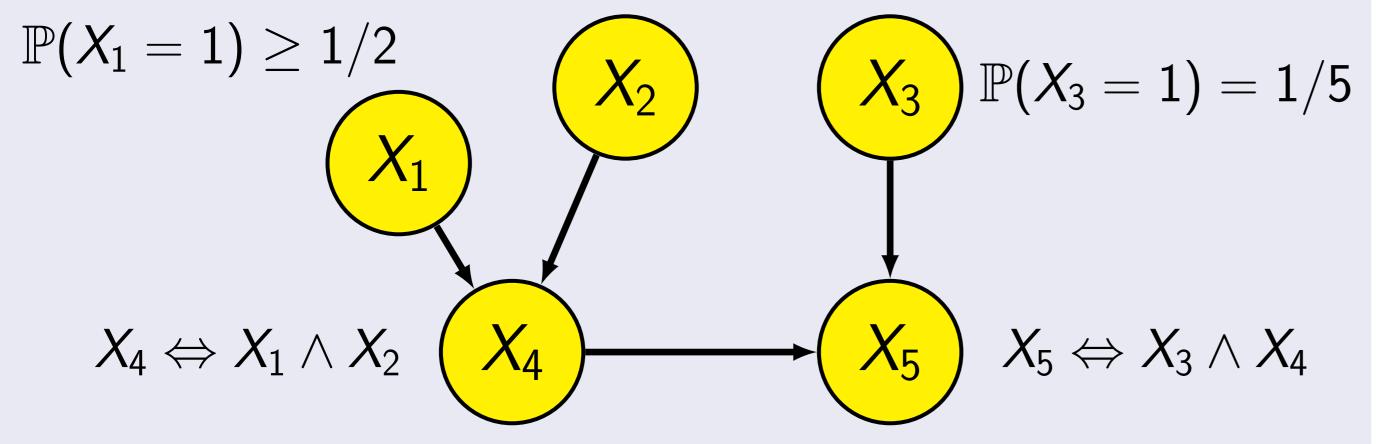
 $\mathbb{P}(X_2 = 1) \in [1/4, 1/3]$



Possible semantics: • Coupled parameters: for each $\gamma \in [1/2, 1]$, $\forall x \in \mathcal{D} : \mathbb{P}(X_1(x)) = \gamma$ is a possible assessment. Decoupled parameters: for each $x \in \mathcal{D}$, $\mathbb{P}(X_1(x)) = \gamma$ is a possible assessment for each $\gamma \in [1/2, 1]$.

Relational credal networks: Results

Explicit domain is given; inference is $INF_d(\mathcal{C})$ with respect to grounded network. Relations of bounded arity.



Every propositional credal network can be specified this way. ■ Hence, $INF_d(Prop(\land, \neg))$ is NP^{PP} -complete.

Theorem: $INF_d^+(FFFO)$ is NP^{PP} -complete both for coupled and decoupled parameters.

Data complexity $DINF_d$: inference when model is fixed, and evidence and domain are inputs. **Theorem**: DINF_d(FFFO) is NP^{PP}-complete for

decoupled parameters.

Theorem: DINF_d(FFFO) is PP-complete for coupled parameters.

This work was partially supported by CNPq and FAPESP.