

Statistical Modelling in Surveys without Neglecting *The Undecided*: Multinomial Logistic Regression Models and Imprecise Classification Trees under Ontic Data Imprecision

Julia Plass^{*}, Paul Fink^{*}, Nobert Schöning^{**} and Thomas Augustin^{*}

*Department of Statistics and **Geschwister Scholl Institute of Political Science, Ludwig-Maximilians-Universität Munich, Germany

Distinction between Epistemic and Ontic Interpretation ^[1]

Epistemic data imprecision:

- Imprecise observation of something precise
- Actually precise values may only be observed in a coarse form, due to an

Ontic data imprecision:

- Precise observation of something imprecise
- Truth is represented by coarse observations
- Example: Answers of indecisive respondents

Classical Analyses \Rightarrow Neglect the Undecided

Do not neglect the Undecided!

Which party are you going to elect? Multiple answers allowed R

In this analysis:

Multiple answers as "AB" form own categories

Construction of an ontic variable reflecting indecisiveness for GLES 2013 (German Longitudinal Election Study)

certainty vote assessment ontic

\Rightarrow loss of information, biased results!

WASTE	

\Rightarrow Opinions are reflected in the most informative way

			CD	S	F	L	G	
13	very certain	G	-1	+2	-4	-4	+4	G
126	fairly certain	S	-1	+1	0	+1	-3	L:S
1515	neither/nor	CD	+3	+3	0	-5	+2	CD:G:S

General Analysis

- Interpretation of coarse answers as ontic sets ^[1], i.e. as a mapping $Z^* : \Omega \to \mathcal{P}(S)$ such that for any $A \subseteq S$ holds: $Z^{*-1}(\{A\}) = \{\omega \in \Omega : Z^*(\omega) = A\} \in \mathcal{A}$
- Regard coarse answers like "A or B" as own categories \Rightarrow Extension of state space $S = \{1, \ldots, c\}$ to $S^* = \mathcal{P}(S) \setminus \emptyset$ \Rightarrow Basing (precise) analyses on the power set: $Y_i^* \subset \{1, \ldots, c\}$

Examples

Multinomial Regress	sion ^[2]	Classification Trees ^[3]			
For each $Y_i^* \subset \{1, \ldots, c\}$ probabilities $\pi_{i1}^*, \ldots, \pi_{im}^*$ $(m = S^*)$ are modelled individually for each cat- egory $s \in \{1, \ldots, m-1\}$ by: $P^*(Y_i^* = s \mid \mathbf{x}_i) = \pi_{is}^* = \frac{\exp(\tilde{\mathbf{x}}_i^T \boldsymbol{\beta}_s^*)}{1 + \sum_{r=1}^{m-1} \exp(\tilde{\mathbf{x}}_i^T \boldsymbol{\beta}_r^*)}$ and for reference category m by $P^*(Y_i^* = m \mid \mathbf{x}_i) = \pi_{im}^* = (1 + \sum_{r=1}^{m-1} \exp(\tilde{\mathbf{x}}_i^T \boldsymbol{\beta}_r^*))^{-1}$. \Rightarrow One obtains own regression coefficients for each coarse category, which exactly reflects the un- derlying idea that different types of indecisive	Illustration by the GLES data:• Dependent variable Y: first vote (reference category S)• Covariates: religious denomination, most important information source• Comparing the ontic to the classical approach, remarkable differences partly associated with a change in sign are obtained $\overline{\text{Coefficient}}$ $\overline{\text{CD}}$ \overline	For classification trees requiring class probabilities in nodes, estimate them over the extended state space S^* . Estimation of conditional class probabilities for ex- tended state space with Nonparametric Predicitve Inference: $P^*(Y^* = y_i^*) \in \left[\max\left(0, \frac{n_i - 1}{n}\right), \min\left(\frac{n_i + 1}{n}, 1\right) \right],$ \Rightarrow General idea as technique already applied in multiclass classification algorithms	 Illustration by the GLES data: Class variable Y: second vote Feature variables scenario 1: religious denomination, most important information source Feature variables scenario 2: additionally to scenario 1, stratum, sex, party identification, interest in politics, economic situation NPI based imprecise classification trees Correct classification rate and its standard deviation estimated by 10-fold cross-validation Scen. ontic classical mean sd 0.407 0.040 0.446 0.041 0.704 0.026 0.817 0.042 		

Conclusion and Outlook

- Incorporate different types of "The Undecided" into statistical analyses
- Only the state space changes, the statistical methods remain the same
- In the data example including indecisive respondents does make a difference even as we were forced to assess indecisiveness indirectly
- Adaption of this idea to coarse response variables of ordinal scale
- Application of the power-set based idea for coarse categorical covariates

References

[1] cp. Couso, Dubois & Sánchez, 2014, Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables [2] e.g. Tutz, 2011, Regression for Categorical Data [3] e.g. Abellán & Moral, 2003, INT J INTELL SYST [4] Rattinger, Roßteutscher, Schmitt-Beck, Weßels & Wolf, 2013, GLES 2013