Credal Compositional Models and Credal Networks

JIŘINA VEJNAROVÁ Institute of Information Theory and Automation of the CAS vejnar@utia.cas.cz

Composition of projective credal sets

For two projective credal sets \mathcal{M}_1 and \mathcal{M}_2 describing X_K and X_L , their *composition* $\mathcal{M}_1 \triangleright \mathcal{M}_2$ is defined by the following expression:

 $(\mathcal{M}_1 \triangleright \mathcal{M}_2)(X_{K \cup L}) = \operatorname{CH}\{(P_1 \cdot P_2)/P_2^{\downarrow_{K \cap L}} : P_1 \in \operatorname{ext}(\mathcal{M}_1(X_K)), P_2 \in \operatorname{ext}(\mathcal{M}_2(X_L)), P_1^{\downarrow_K \cap L} = P_2^{\downarrow_K \cap L}\}.$

Credal networks

A credal network over X_N is (in analogy to Bayesian networks) a pair $(\mathcal{G}, \{\mathbf{P}^1, \ldots, \mathbf{P}^k\})$ such that, for any $i = 1, \ldots, k$, $(\mathcal{G}, \mathbf{P}^i)$, is a Bayesian network over X_N , i.e., each \mathbf{P}^i is a system of conditional probability distribution forming the joint distribution of X_N , $P^i(X_N)$. The resulting model is a credal set, which is the convex hull of the Bayesian networks, i.e.,

For two projective credal sets \mathcal{M}_1 and \mathcal{M}_2 describing X_K and X_L , respectively, the following properties hold true:

1. $\mathcal{M}_1 \triangleright \mathcal{M}_2$ is a credal set describing $X_{K \cup L}$.

2. $(\mathcal{M}_1 \triangleright \mathcal{M}_2)(X_K) = \mathcal{M}_1(X_K)$ and $(\mathcal{M}_1 \triangleright \mathcal{M}_2)(X_L) = \mathcal{M}_2(X_L).$

3. $\mathcal{M}_1 \triangleright \mathcal{M}_2 = \mathcal{M}_2 \triangleright \mathcal{M}_1.$

Operator of composition is not associative.

Perfect sequence of credal sets (and probability distributions)

A generating sequence of credal sets $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ is called *perfect* if

 $\mathcal{M}_1 \triangleright \mathcal{M}_2 = \mathcal{M}_2 \triangleright \mathcal{M}_1,$ $\mathcal{M}_1 \triangleright \mathcal{M}_2 \triangleright \mathcal{M}_3 = \mathcal{M}_3 \triangleright (\mathcal{M}_1 \triangleright \mathcal{M}_2),$ \vdots $\mathcal{M}_1 \triangleright \mathcal{M}_2 \triangleright \ldots \triangleright \mathcal{M}_n = \mathcal{M}_n \triangleright (\mathcal{M}_1 \triangleright \ldots \triangleright \mathcal{M}_{n-1}).$

Let $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_m$ be a perfect sequence of credal sets such that each $\mathcal{M}_i, i = 1, \ldots, m$, is the convex hull of its extreme points, i.e.,

$\operatorname{CH}\{P^1(X_N),\ldots,P^k(X_N)\}.$

Separately specified credal networks

A separately specified credal network over X_N is a pair $(\mathcal{G}, \mathbf{M})$, where \mathbf{M} is a set of conditional credal sets $\mathcal{M}(X_i|pa(X_i))$ for each $X_i \in X_N$, and $pa(X_i)$ denotes the set of parent variables of X_i . Here the overall model is, in analogy to Bayesian networks, obtained as a strong extension of the $\mathcal{M}(X_i|pa(X_i)), i \in N$.

Relation among different models

Let us denote by $\mathcal{CN}(X_N)$, $\mathcal{SCN}(X_N)$ and $\mathcal{CM}(X_N)$ the class of all credal networks over X_N , the class of all separately specified credal networks over X_N and the class of compositional models over X_N , respectively.

For any X_N

 $\mathcal{SCN}(X_N) \subset \mathcal{CM}(X_N) \subset \mathcal{CN}(X_N).$

From perfect sequence to credal network

 $\mathcal{M}_i(X_{K_i}) = \operatorname{CH}\{P_i : P_i \in \operatorname{ext}(\mathcal{M}_i(X_{K_i}))\}.$

Then

 $\mathcal{M}_1 \triangleright \mathcal{M}_2 \triangleright \cdots \triangleright \mathcal{M}_m$

is a convex hull of all

 $P_1 \triangleright P_2 \triangleright \ldots \triangleright P_m$ such that each $P_i \in \text{ext}(\mathcal{M}_i(X_{K_i}))$, and P_1, P_2, \ldots, P_m form a perfect sequence.

Example

Let $\mathcal{M}_i, i = 1, \ldots, 4$ be credal sets defined as follows:

 $\mathcal{M}_1(X_1) = CH\{[0.2, 0.8], [0.5, 0.5]\}, \qquad \mathcal{M}_2(X_2) = CH\{[0.5, 0.5], [0.8, 0.2]\},$

 $\mathcal{M}_3(X_1X_2X_3) = CH\{[0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3], [0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12], \\ [0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075]\}$

and

 $\mathcal{M}_4(X_3X_4) = CH\{[0.44, 0.11, 0.18, 0.27], [0.56, 0.14, 0.12, 0.18], [0.33, 0.22, 0.09, 0.36], [0.42, 0.28, 0.06, 0.24]\}.$

These credal sets form a perfect sequence $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ and the credal set $\mathcal{M}(X_1, X_2, X_3, X_4) = \mathcal{M}_1 \triangleright \mathcal{M}_2 \triangleright \mathcal{M}_3 \triangleright \mathcal{M}_4$ is then

Having a perfect sequence $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_m$ (\mathcal{M}_ℓ being a credal set describing X_{K_ℓ}), we first order all of the variables for which at least one of the credal sets \mathcal{M}_ℓ is defined in such a way that first we order (in an arbitrary way) variables for which \mathcal{M}_1 is defined, then variables from \mathcal{M}_2 that are not contained in \mathcal{M}_1 , etc. Finally we have

 $\{X_1, X_2, X_3, \ldots, X_n\} = \{X_i\}_{i \in K_1 \cup \ldots \cup K_m}.$

Then we get a graph of the constructed evidential network in the following way: 1. the nodes are all the variables $X_1, X_2, X_3, \ldots, X_n$;

2. there is an edge $(X_i \to X_j)$ if there exists a credal set \mathcal{M}_{ℓ} such that both $i, j \in K_{\ell}, j \notin K_1 \cup \ldots \cup K_{\ell-1}$ and either $i \in K_1 \cup \ldots \cup K_{\ell-1}$ or i < j.

Having the structure of the credal network, i.e., graph \mathcal{G} , one can obtain the systems of conditional probability distributions from corresponding perfect sequences of probability distributions.

Example — continued

From perfect sequence $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$, we get the ordering of variables X_1, X_2, X_3, X_4 and the structure of the credal network:

 (X_1)

 X_2

$$\begin{split} \mathcal{M} &= \operatorname{CH}\{[0.08, 0.02, 0, 0, 0.24, 0.06, 0.04, 0.06, 0.04, 0.01, 0.02, 0.03, 0.08, 0.02, 0.12, 0.18], \\ & [0.06, 0.04, 0, 0, 0.18, 0.12, 0.02, 0.08, 0.03, 0.02, 0.01, 0.04, 0.06, 0.04, 0.06, 0.24], \\ & [0.128, 0.032, 0, 0, 0.024, 0.006, 0.004, 0.006, 0.256, 0.064, 0.128, 0.192, 0.032, 0.008, 0.048, 0.072], \\ & [0.096, 0.064, 0, 0, 0.018, 0.012, 0.002, 0.008, 0.192, 0.128, 0.064, 0.256, 0.024, 0.016, 0.024, 0.096], \\ & [0.32, 0.08, 0, 0, 0.06, 0.015, 0.015, 0.01, 0.16, 0.04, 0.08, 0.12, 0.02, 0.005, 0.03, 0.015], \\ & [0.24, 0.16, 0, 0, 0.045, 0.03, 0.005, 0.02, 0.12, 0.08, 0.04, 0.16, 0.015, 0.01, 0.015, 0.06]\}. \end{split}$$

This credal set can be obtained either directly by successive application of composition operator or as a convex hull of $P_1^{i_1} \triangleright P_2^{i_2} \triangleright P_3^{i_3} \triangleright P_4^{i_4}$, where any $P_1^{i_1}, P_2^{i_2}, P_3^{i_3}, P_4^{i_4}$ forms a perfect sequence, and any $P_j^{i_j} \in \text{ext}(\mathcal{M}_j)$. In this example we have six perfect sequences, namely

$P_1^1, P_2^1, P_3^1, P_4^1;$	$P_1^1, P_2^1, P_3^1, P_4^3;$	$P_1^1, P_2^2, P_3^2, P_4^1;$
$P_1^1, P_2^2, P_3^2, P_4^3;$	$P_1^2, P_2^2, P_3^3, P_4^2;$	$P_1^2, P_2^2, P_3^3, P_4^4,$

where

$$\begin{split} P_1^1 &= [0.2, 0.8], \qquad P_1^2 = [0.5, 0.5], \qquad P_2^1 = [0.5, 0.7], \\ P_3^1 &= [0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3], \qquad P_4^1 = [0.7, 0.7], \\ P_3^2 &= [0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12], \qquad P_4^2 = [0.7, 0.7], \\ P_3^3 &= [0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075], \qquad P_4^3 = [0.7, 0.025, 0.025, 0.075], \end{split}$$

$P_2^1 = [0.5, 0.5], \qquad P_2^2 = [0.8, 0.2],$ $P_4^1 = [0.44, 0.11, 0.18, 0.27],$ $P_4^2 = [0.56, 0.14, 0.12, 0.18],$ $P_4^3 = [0.33, 0.22, 0.09, 0.36],$ $P_4^4 = [0.42, 0.28, 0.06, 0.24].$

