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Manifold of probability measures

Let Y be an observation space and F) a probability measure on some o-algebra
of events defined on ). Let P be another probability measure having the same
null sets. Then the log likelihood ratio for distinguishing these two measures
can be written as

dP
10gd—P;=U—](Po’P1) (1)
where
E()(U):/”Udp():o
and ap
I(P|P) = [ log—2dP
(P|P1) /OgdH 0

1s the Kullback-Leibler information from B, to F;.
From this we can write

Pi(A) = / 14ev 1P gy,

and introducing a scalar parameter 8 we can define a one-dimensional expo-

nential family P = {Fy} by
Py(A) = / 1, el 1D g P (2)

provided that

/eevdPo < Q.

More generally, given a list v = (vy, ..., v) of linearly independent random
variables with

E()(UZ):O, Z:L,k (3)

we can define a k-dimensional exponential family
Py(A) = /1A e V1ol o) dbp, (4)

where

0cO={0cR": I(P|P) < oo}

O will be a convex set in R*. The set of probability measures thus defines a

k-dimensional manifold
M = {(—](PO\PH),Ql,...,Qk) : ](PQ’PQ) << OO}

embedded in R¥"!. This manifold can be projected one-to-one onto L, its
tangent space at Fy. The set of probability measures can then be represented

uniquely by vectors in this tangent space, or by the parameters in ©.
Remark: The constraint (3) ensures that the vector space £ is tangent to the manifold. It is not essential for
constructing a correspondence between vectors and probability measures.

Dual manifold of priors and posteriors

A prior distribution Il can be considered equivalently as a probability mea-
sure on M, L, or ©. We will consider it defined on £. Then the construction
analogous to (1) requires functions defined on L. In fact, for any observa-
tion y € YV, the evaluation functional which maps

v = v(y)

is a linear function on £ as is the mapping

vwmw—/w@ﬂww,

the latter also satisfying (3). Denote by my the density of II;. Then for a
family defined by (4) Bayes’ rule will give the posterior density

__ m(0) exp(v(y) — I(D| 1))
| exp(w(y) — 1(Py|P,)) dllp(w)

This can be written in the equivalent form:

an,
dll

(V)

log ——(v) = v(y) — I(B|Py) — ¥(y) (5)

where

P(y) = log / exp (v(y) — I(PP)) dlo(v).

This is analogous to (1) in which the posterior distribution can be expressed
as a shift from the prior by the evaluation functional as well as the func-

tion v — —I(Fy|P,).
Note that

e the first two terms in (5) do not depend on the prior,
e the second term does not depend on the observation v,

e the third term depends on y but not on the vector v.

By ignoring v (y), each possible posterior can be projected uniquely onto the
linear space L£* spanned by the evaluation functionals and [(Fy|P,). The
dimension of L£* is one greater than that of £. Using the construction (2), the
elements of £* will then define an exponential family P* containing the prior
and all possible posteriors.

In the present construction,
the space L* is not tangent to

ﬁ the manifold P*. This could
be achieved by subtract-
ing from v(y) and I(Fy|P,)
—_I(R|R,) their Il-expectations. Such
an adjustment would change
the specific correspondence

between L£* and P*, but not
the principle.
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improper priors
Imprecise updating

An imprecise prior can be represented
as a (convex) set of priors. Such a set
can be visualized as a set in L*. Since
the first two terms in (5) do not de-
pend on the prior, and the third terms
15 “projected away’, Bayesian updat-
ing of the prior set appears as a simple
translation of the entire set.

projection of P*
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Upper and lower posterior previsions
of parametric functions can be deter-
mined as suprema and infima over the
translated set. If the level sets of such
functions are linear in L£*, then the ex-
trema will occur at the extreme points
of the posterior set.

projection of P*
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