The Geometry of Imprecise Inference Mikelis Bickis

University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Manifold of probability measures

Let \mathcal{Y} be an observation space and P_0 a probability measure on some σ -algebra of events defined on \mathcal{Y} . Let P_1 be another probability measure having the same null sets. Then the log likelihood ratio for distinguishing these two measures can be written as

$$\log \frac{dP_1}{dP_0} = v - I(P_0|P_1)$$
 (1)

where

and

$$I(P_0|P_1) = \int \log \frac{dP_0}{dP_1} dP_0$$

 $E_0(v) = \int v \, dP_0 = 0$

is the Kullback-Leibler information from P_0 to P_1 . From this we can write

$$P_1(A) = \int \mathbf{1}_A e^{v - I(P_0|P_1)} dP_0,$$

Dual manifold of priors and posteriors

A prior distribution Π_0 can be considered equivalently as a probability measure on \mathcal{M}, \mathcal{L} , or Θ . We will consider it defined on \mathcal{L} . Then the construction analogous to (1) requires functions defined on \mathcal{L} . In fact, for any observation $y \in \mathcal{Y}$, the evaluation functional which maps

 $v \mapsto v(y)$

is a linear function on \mathcal{L} as is the mapping

 $v \mapsto v(y) - \int w(y) \, d\Pi_0(w),$

the latter also satisfying (3). Denote by π_0 the density of Π_0 . Then for a family defined by (4) Bayes' rule will give the posterior density

$$\pi_y(v) = \frac{\pi_0(\theta) \exp(v(y) - I(P_0|P_v))}{\int \exp(w(y) - I(P_0|P_w)) \, d\Pi_0(w)}.$$

and introducing a scalar parameter θ we can define a one-dimensional exponential family $\mathcal{P} = \{P_{\theta}\}$ by

$$P_{\theta}(A) = \int \mathbf{1}_A e^{\theta v - I(P_0|P_{\theta})} dP_0, \qquad (2)$$

provided that

This can be written in the equivalent form:

$$\log \frac{d\Pi_y}{d\Pi_0}(v) = v(y) - I(P_0|P_v) - \psi(y)$$
(5)

where

$$\psi(y) = \log \int \exp\left(v(y) - I(P_0|P_v)\right) \, d\Pi_0(v).$$

This is analogous to (1) in which the posterior distribution can be expressed as a shift from the prior by the evaluation functional as well as the function $v \mapsto -I(P_0|P_v)$. Note that

- the first two terms in (5) do not depend on the prior,
- the second term does not depend on the observation y,
- the third term depends on y but not on the vector v.

variables with

(3) $E_0(v_i) = 0, \quad i = 1, \dots, k$

we can define a k-dimensional exponential family

$$P_{\boldsymbol{\theta}}(A) = \int \mathbf{1}_A \, e^{\boldsymbol{\theta}^\top \mathbf{v} - I(P_0|P_{\boldsymbol{\theta}})} \, dP_0, \tag{4}$$

where

 $\boldsymbol{\theta} \in \Theta = \{ \boldsymbol{\theta} \in \mathbb{R}^k : I(P_0 | P_{\boldsymbol{\theta}}) < \infty \}.$

 Θ will be a convex set in \mathbb{R}^k . The set of probability measures thus defines a k-dimensional manifold

 $\mathcal{M} = \{ (-I(P_0|P_{\theta}), \theta_1, \dots, \theta_k) : I(P_0|P_{\theta}) < \infty \}$

embedded in \mathbb{R}^{k+1} . This manifold can be projected one-to-one onto \mathcal{L} , its tangent space at P_0 . The set of probability measures can then be represented uniquely by vectors in this tangent space, or by the parameters in Θ . **Remark:** The constraint (3) ensures that the vector space \mathcal{L} is tangent to the manifold. It is not essential for constructing a correspondence between vectors and probability measures.

By ignoring $\psi(y)$, each possible posterior can be projected uniquely onto the linear space \mathcal{L}^* spanned by the evaluation functionals and $I(P_0|P_v)$. The dimension of \mathcal{L}^* is one greater than that of \mathcal{L} . Using the construction (2), the elements of \mathcal{L}^* will then define an exponential family \mathcal{P}^* containing the prior and all possible posteriors.

In the present construction, the space \mathcal{L}^* is not tangent to the manifold \mathcal{P}^* . This could be achieved by subtracting from v(y) and $I(P_0|P_v)$ their Π_0 -expectations. Such an adjustment would change the specific correspondence between \mathcal{L}^* and \mathcal{P}^* , but not the principle.

translation of the entire set.

NSERC CRSNG

Research supported by the Natural Sciences and Engineering Research Council of Canada

ISIPTA'15, Pescara, Italy, 20 July 2015