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Introduction
• Clustering can be seen as the search for a “good” partition of a set of n objects described either by

attributes, or by a dissimilarity matrix.

•Usual approaches are based either on a geometric criterion, as in the k-means algorithm, or on a
finite mixture model whose parameters are estimated using, e.g., the EM algorithm.

•Here, we propose a different view of partitional clustering, in which dissimilarities are seen as
pieces of evidence and represented as belief functions on the set of all partitions of the dataset
under study.

• Finding the most plausible partition is a linear programming problem, which can be solved exactly
for small n.

•A heuristic algorithm (the Ek-NN algorithm) can find a local optimum for large datasets, without
specifying the number of classes.

Formalization
Let O denote a set of n objects and let R be the set of equivalence relations on O (this set is in
one-to-one correspondence with the set of partitions). We assume the existence of a true equivalence
relation R0. Dissimilarities between objects are considered as items of evidence about R0, which
can be represented by mass function mij with three focal sets: the set Rij of equivalence relations
containing objects i and j, its complement ¬Rij, andR, and corresponding masses

mij(Rij) = αij (1a)
mij(¬Rij) = βij (1b)

mij(R) = 1− αij − βij. (1c)

After combining these n(n − 1)/2 mass functions by Dempster’s rule, we get a mass function m on
R with contour function pl defined by the following equation,

ln pl(R) = C +
∑
i<j

Rij ln
1− βij
1− αij

, (2)

where C is a constant. The most plausible partition can thus be found exactly, for small n (until, say,
n ≤ 100) using a binary linear programming solver.

Hopfield model
To make the above approach feasible for large n, we need a heuristic optimization method. We show
that a local maximum of ln pl(R) defined by (2) can be found by a Hopfield neural network model
[3] with n neurons, in which each neuron can be in one of c states, where c is the desired number of
clusters. The weight vij of the connection between neurons i and j is the coefficient of Rij in (2).
Starting from random initial states, the state of each neuron i is updated at asynchronous times, by
finding k such that

∑
j 6=i vijsjk is maximum, where sjk = 1 if neuron j is in state k, and sjk = 0

otherwise. This algorithm is shown to converge to a global network state that corresponds to a local
maximum of (2).

EK-NNclus algorithm
• Fast implementation: βij = 0, αij = 0 except for the K nearest neighbors of object oi.

•Unsupervised version of the evidential K-NN classifier [1].

Require: Number of states c, distance matrix D = (dij), number of neighbors K
Randomly initialize variables sik for i = 1, . . . , n; k = 1, . . . , c.
Compute αij = ϕ(dij) if j ∈ NK(i) and αij = 0 otherwise, and vij = − ln(1 − αij), for
i = 1, . . . , n; j = 1, . . . , n
change← true
while change do

Select a random permutation σ of {1, . . . , n}
change← false
for i = 1 to n do

for k = 1 to c do
uσ(i)k ←

∑
j∈NK(σ(i)) vσ(i)jsjk

end for
k∗← arg maxk uσ(i)k
if sσ(i)k∗ = 0 then

Set sσ(i)k∗ ← 1 and sσ(i)k ← 0 for all k 6= k∗

change← true
end if

end for
Update c, renumber the clusters and change variables sik accordingly

end while

Experiments
Settings: ϕ(dij) = exp(−γd2

ij), where dij is the Euclidean distance between objects i and j. Parame-
ter γ was fixed to the inverse of the q-quantile of the set ∆ = {d2

ij, i ∈ {1, . . . , n}, j ∈ NK(i)}.

A-datasets Two-dimensional datasets with 20, 35 and 50 clusters. Parameter q of the EK-NNclus
algorithm was fixed to q = 0.9. The number of neighbors was fixed to K = 150 for dataset A1, and
K = 200 for datasets A2 and A3 (i.e., consistently with the rule of thumb that K should be of the
order of two to three times

√
n). Two initialization methods were used: c0 = n initial clusters, and

c0 = 1000 random initial clusters. The EK-NNclus algorithm was run 10 times.
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Dataset Result EK-NNclus EK-NNclus pdfCluster model-based model-based
(c0 = n) (c0 = 1000) (constrained)

A1 c 20 (0) 20 (0) 17 24 24
n = 3000 time 32.9 (3.14) 9.8 (0.2) 84.5 31.8 7.88

A2 c 35 (0) 34 (1) 26 39 39
n = 5250 time 193 (9.81) 23.8 (0.6) 298 138 36.2

A3 c 49 (1) 49 (2.5) 34 50 51
n = 7500 time 358 (8.23) 35.1 (1.09) 629 412 99.4

DIM-datasets High-dimensional data sets n = 1024 and 16 Gaussian clusters. Parameters q and
K of the EK-NNclus algorithm were fixed to q = 0.9 and K = 50. The algorithm was initialized
with c0 = n clusters and was run 10 times. The c-means algorithm was run 100 times with c = 16
clusters and the result with the best value of the objective function was kept. As the pdfCluster
procedure cannot be used in high dimensions, we performed a PCA of the data and used the first two
principal components, with parameter n.grid set to 1000. For the model-based method Mclust,
the constrained model (spherical cluster shape and equal volume) was assumed and the number of
clusters was varied from 3 to 20.

Dataset Result EK-NNclus c-means pdfCluster model-based
(constrained)

dim256 c 16 (0) 16 (fixed) 5 16
ARI 1.0 (0) 0.94 0.23 1
time 1.4 (0.058) 2.76 11.30 116

dim512 c 16 (0) 16(fixed) 9 16
ARI 1 (0) 0.94 0.5 1
time 1.4 (0.11) 13.27 10.9 467

dim1024 c 16 (0) 16 (fixed) 8 18
ARI 1 (0) 0.94 0.28 0.998
time 1.4 (0.14) 36.38 11.13 23

Conclusions
The EK-NNclus algorithm generally performs better than density-based and model-based clustering
procedures, especially when it comes to determining the number of clusters. It is also faster than the
nonparameteric density-based approach, and it performs much better with high-dimensional data. As
the EK-NNclus algorithm is based on distances, it can be applied to any proximity data, and it can be
kernelized to handle data with complex cluster shapes. These research directions are currently being
investigated.
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