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h Introduction g

In this poster, I wish to present some preliminary ideas about the use
of exclusive disjunctions in uncertainty modeling.

To start, I will use the following description of a collection of six-sided
dice as a basis for a running example:

There are four faces, each present at least once: clubs ♣,
spades ♠, diamonds ♢, and hearts ♡. A face only becomes
visible after applying a drop of white wine to its side. There are
at least three black faces. There are either more hearts than
diamonds or an equal number of clubs and spades. A die is fair
unless it has more black than white-faced sides, then each of the
latter is equally more likely to land up than each of the former.

h Conceptual Approach g

Possibility space Ω , restricted to observables.

Ω = {♣,♢,♠,♡}
(The die variant should not be put into the possibility space.)

So a conscious decision is made about which exclusive disjunc-
tions define the possibility space, and which not.

Partial order X , generated by the exclusive disjunctions.

The Hasse diagram of the partial order for the dice example:

?♣ ♢ ?♠ ?♡

♣♣ ♢ ?♠ ?♡ ?♣ ♢ ?♠ ♡♡ ?♣ ♢ ♠♠ ?♡

♣♣ ♢ ♠ ♡♡ ♣♣ ♢ ♠♠ ♡ ♣ ♢ ♠♠ ♡♡

(The question mark ‘?’ indicated that it is unknown whether
there are one or two faces of the following type.)

Uncertainty models are attached to each element of the partial
order X . (I am considering anything that is essentially a partial
preference order of gambles, or equivalent to one—or a pair.) Each
should ‘reflect’ the information common to its upset in X .

Here, we add partial preference relations:

?♣ ♢ ?♠ ?♡
♠+♡ ⪰ ♣+♢ ♣+♡ ⪰ ♠+♢

♣+3♢+♠ ⪰ 3♡
5♢ ⪰ ♣+♠+♡

♣♣ ♢ ?♠ ?♡
♣+♢ ≃ ♠+♡
2♠ ⪰ ♣ ⪰ ♠

2♢ ⪰ ♣

?♣ ♢ ?♠ ♡♡
♣+♠ ≃ ♢+♡

2♣ ⪰ ♠ 2♠ ⪰ ♣
2♢ ≃ ♡

?♣ ♢ ♠♠ ?♡
♠+♢ ≃ ♣+♡
2♣ ⪰ ♠ ⪰ ♣

2♢ ⪰ ♠

♣♣ ♢ ♠ ♡♡
♣ ≃ ♡ ♠ ≃ ♢

2♢ ≃ ♣

♣♣ ♢ ♠♠ ♡
♣ ≃ ♠ ♢ ≃ ♡

4♢ » ♣+♠

♣ ♢ ♠♠ ♡♡
♣ ≃ ♢ ♠ ≃ ♡

2♢ ≃ ♠

• Each face stands for the corresponding indicator gamble.
• ⪰ stands for (reflexive) acceptance.
• » stands for (irreflexive) preference.
• ≃ stands for indifference.

The uncertainty models may be more informative than the ‘lower
envelope’ of their upset.

Zooming in on part of the above example, modifying one un-
certainty model:

?♣ ♢ ?♠ ♡♡
♣+♠ ≃ ♢+♡

3♣ ⪰ 2♠ 3♠ ⪰ 2♣
2♢ ≃ ♡

♣♣ ♢ ♠ ♡♡
♣ ≃ ♡ ♠ ≃ ♢

2♢ ≃ ♣

♣ ♢ ♠♠ ♡♡
♣ ≃ ♢ ♠ ≃ ♡

2♢ ≃ ♠

So X ’s non-maximal elements’ uncertainty models can be seen as
the result of some fusion or second order modeling operation.

Optimality criteria are attached to each element of the partial or-
der X .

Maximality —non-domination in the partial preference order—is
the most natural criterion.

P-interval dominance can be used as a conservative approxima-
tion to maximality.

Maximin-of-maximal —those maximal gambles with maximum min-
imum payoff—is appropriate when guarantees on worst-case
payoffs are desired.

P-maximin —those gambles with maximum lower expected
payoff—is appropriate when guarantees on expected worst-case
payoffs are desired.

E-admissibility can be modeled as a partial order with, attached
to its maximal elements, ‘precise’ uncertainty models and the
maximality criterion.

Γ -maximin does not fit into our conceptual approach, when the
set Γ of ‘precise’ uncertainty models is assumed to consist of
those attached to the maximal elements of a partial order X .
(Of course it is mathematically equivalent to attaching P-maximin to the ‘lower

envelope’ of Γ , which might not be present in the partial order, however.)

Choice functions C are derived as set functions of the optimal ele-
ments associated to each element of X , given some set of options.
(A natural choice for this set function is taking the union over a
maximal antichain of X .)

Option set:

O = { 2♠+♢−♡ , 2♣+2♢−2♡ , 3♡−2♠ }.

♣♣ ♢ ♠ ♡♡
♣ ≃ ♡ ♠ ≃ ♢

2♢ ≃ ♣

maximality

∪

♣♣ ♢ ♠♠ ♡
♣ ≃ ♠ ♢ ≃ ♡

4♢ » ♣+♠

maximin-of-maximal

∪

♣ ♢ ♠♠ ♡♡
♣ ≃ ♢ ♠ ≃ ♡

2♢ ≃ ♠

maximality

C(O) = {3♡−2♠}∪{2♠+♢−♡}∪{2♠+♢−♡}.

?♣ ♢ ?♠ ♡♡
♣+♠ ≃ ♢+♡

3♣ ⪰ 2♠ 3♠ ⪰ 2♣
2♢ ≃ ♡

P-maximin

∪

♣♣ ♢ ♠♠ ♡
♣ ≃ ♠ ♢ ≃ ♡

4♢ » ♣+♠

P-maximin

C(O) = {2♠+♢−♡}∪{2♠+♢−♡,2♣+2♢−2♡}.

Similar choices can be made based on different antichains by
using appropriate optimality criteria.

We adapt an example from Seidenfeld et al.’s 2010 Synthese
paper Coherent choice functions under uncertainty (§4): Two
independent events (and their complements) are considered,
A for the allergic state of a patient and S for the weather in
New York City; so

Ω = { AS AcS
ASc AcSc (︀.

Two probability mass functions are used (each representing
the opinion of a medical expert):

p1 = ( .08 .12
.32 .48 ) , p2 = ( .48 .32

.12 .08 ) .
Three options—treatment ‘gambles’—are considered:

T1 = ( 0 1
0 1 ) , T2 = ( 1 0

1 0 ) , T3 = ( .99 −.01
−.01 .99 ) ,

where the last one is considered intuitively inadmissible.

Our partial order with uncertainty models attached:

40⇑40

Credal set with
p1 and p2

as extreme points

40⇑60
p1

60⇑40
p2

A solution:

40⇑60
p1

maximality

∪
60⇑40

p2

maximality

C({T1,T2,T3}) = {T1,T2}.

A non-solution:

40⇑40

Credal set with
p1 and p2

as extreme points

maximality

C({T1,T2,T3}) = {T1,T2,T3}.

Let d be a function that mea-
sures the distance of treatment
gambles to the set of allergy-
focused gambles (the span of T1
and T2). Gambles outside of this
set can be considered to also
be about betting on the weather,
which is intuitively undesirable in
this context.

An alternate solution:

40⇑40

Credal set with
p1 and p2

as extreme points

maximality plus
d-penalization

C({T1,T2,T3}) = {T1,T2}.

h Sets of probability measures g

Operational assessments are seen as the basic building blocks
of the uncertainty models: supremum acceptable buying prices,
acceptable gambles, preferences between gambles,. . .

Probability measures are seen as a particular mathematical repre-
sentation of some very special ‘precise’ uncertainty models.

Credal sets —convex sets of probability measures—are seen as
alternative, (approximate) mathematical representations of the
uncertainty models we consider.

Non-convex sets of probability measures are not regarded as
uncertainty models here, but as special maximal antichains in
some partial orders. Even though they are often thought of as
credal sets, I think ‘sensitivity analysis’ models belong here as
well: being the ‘true’ probability is exclusive.

h Independence g

Epistemic irrelevance is considered the basic notion.

Epistemic independence is its symmetrization.

Complete independence makes sense when all elements in a max-
imal antichain of X have ‘precise’ independent products attached.

Strong independence appears naturally in the ‘lower envelopes’ of
partial orders with complete independence.

h Outer approximations g

Previously, we used uncertainty models in elements of X that were or
dominated ‘lower envelopes’ of the uncertainty models in the upset.
We can also consider situations where we use an outer approxima-
tion to such a lower envelope.

Consider a situation in which we are learning from a bag of
marbles (●, ●, and ●) using an ID(M)M with s = 2. The partially
imprecise observation sequence is

●,●,●,{●,●},{●,●}.
The resulting partial order, with uncertainty models attached:

?● ??● ?●

● ●

●

●● ?● ?●

● ●

●
● ?●● ?●

● ●

●

●● ● ●●

● ●

●
●● ●● ●

● ●

●
● ●●● ●

● ●

●
● ●● ●●

● ●

●

(We ignored exchangeability when drawing the Hasse diagram and did not

include elements due to the second ordering of imprecise observations.)

h Logic g

Algebraic normal form seems tailor-made for encoding antichains
of uncertainty models.

The antichain in the first choice function example:

(♣ ≃ ♡)(♠ ≃ ♢)(2♢ ≃ ♣)
⊕

(♣ ≃ ♠)(♢ ≃ ♡)(4♢ » ♣+♠)
⊕

(♣ ≃ ♢)(♠ ≃ ♡)(2♢ ≃ ♠)

The antichain in the second choice function example:

(♣+♠ ≃ ♢+♡)(3♣ ⪰ 2♠)(3♠ ⪰ 2♣)(2♢ ≃ ♡)
⊕

(♣ ≃ ♠)(♢ ≃ ♡)(4♢ » ♣+♠)

Questions

• How to combine such assessment expressions with expres-
sions describing gamble subspaces for expressing marginal and
contingent models? (Do we need to move to a modal logic?)

• Is the meaning of exclusive disjunction as we know it from logic
too strong, considering our desire to use fused models in the
partial orders?


