Hyperbolic Systems with **Random Set Coefficients**

Jelena Nedeljković, Michael Oberguggenberger University of Innsbruck, Austria

Motivation

Consider the problem

1)
$$(\partial_t + \Lambda(x,t)\partial_x)u = F(x,t)u + G(x,t), \quad (x,t) \in \mathbb{R}^2$$

 $u(x,0) = a(x), \quad x \in \mathbb{R}$

to be solved for unknown function $u = (u_1, \ldots, u_n)$.

- $G = (G_1, \dots, G_n), a = (a_1, \dots, a_n)$
- Λ and *F* are $(n \times n)$ -matrix functions
- The coefficient matrix Λ real-valued and diagonal

 $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$

- Imprecise coefficients: each $\lambda_i, j = 1, \dots, n$ is given by
 - a random set
 - a random field (stochastic process in higher dimensions)
 - a random field with interval-valued parameters
- Applications: a prototype model for wave propagation in random media
- Methods: combining stochastics with
 - the method of characteristics
 - the algebras of Colombeau generalized functions

Method of characteristics

• The system (1) written componentwise for $j = 1, \ldots, n$:

 $\left(\partial_t + \lambda_j(x,t)\partial_x\right)u_j = F_j(x,t)u(x,t) + G_j(x,t), \quad (x,t) \in \mathbb{R}^2$ $u_j(x,0) = a_j(x), \quad x \in \mathbb{R}$

The integral curves obtained from the system

(2)
$$\frac{d}{d\tau}\gamma_j(x,t,\tau) = \lambda_j(\gamma_j(x,t,\tau),\tau) \\ \gamma_j(x,t,t) = x$$

lead to the solution

 $u_{j}(x,t) = a_{j}(\gamma_{j}(x,t,0)) + \int_{0}^{t} F_{j}(\gamma_{j}(x,t,\tau),\tau,u(\gamma_{j}(x,t,\tau),\tau))d\tau$

It is also possible to establish the continuous dependence between coefficients $\lambda = (\lambda_1, \ldots, \lambda_n)$, characteristic curves $\gamma = (\gamma_1, \ldots, \gamma_n)$ and the solution u, neccessary for the stochastic applications:

> $\lambda \mapsto \gamma \mapsto u^{\lambda}$ (3)

Random set coefficients

• $\lambda_j, j = 1, ..., n$ are random sets on a probability space $(\Omega, \Sigma, \mathbb{P})$ • Define

The algebra of Colombeau generalized stochastic processes

- $(\Omega, \Sigma, \mathbb{P})$ a probability space
- $\mathcal{E}(\mathbb{R}^n)$ the space of nets $(X_{\varepsilon})_{\varepsilon}, \varepsilon \in (0,1)$ of processes

 $X_{\varepsilon}: (0,1) \times \mathbb{R}^n \times \Omega \to \mathbb{R}^n$

with almost surely smooth paths, such that:

- $(t,\omega) \mapsto X_{\varepsilon}(t,\omega)$ is jointly measurable, for all $\varepsilon \in (0,1)$
- $t \mapsto X_{\varepsilon}(t,\omega)$ belongs to $\mathcal{C}^{\infty}(\mathbb{R}^n)$, for all $\varepsilon \in (0,1)$ and almost all $\omega \in \Omega$.
- $\mathcal{E}_{M}^{\Omega}, \mathcal{N}^{\Omega}(\mathbb{R}^{n})$ spaces of nets of processes $(X_{\varepsilon})_{\varepsilon} \in \mathcal{E}(\mathbb{R}^{n}), \ \varepsilon \in (0,1)$ with the following properties, respectively:
 - for almost all $\omega \in \Omega$, all compact $K \subset \mathbb{R}^n, \alpha \in \mathbb{N}_0^n$, there exist constants N, C > 0 and $\varepsilon_0 \in (0, 1)$ such that

 $\sup_{t \in K} |\partial^{\alpha} X_{\varepsilon}(t, \omega)| \le C \varepsilon^{-N}, \varepsilon \le \varepsilon_0$

• for almost all $\omega \in \Omega$, all compact $K \subset \mathbb{R}^n, \alpha \in \mathbb{N}_0^n, b \in \mathbb{R}$, there exist C > 0 and $\varepsilon_0 \in (0, 1)$ such that

 $\sup_{t \in K} |\partial^{\alpha} X_{\varepsilon}(t, \omega)| \le C\varepsilon^{b}, \varepsilon \le \varepsilon_{0}$

The differential algebra of **Colombeau generalized stochastic processes** is the factor algebra

4)
$$U(\omega) = \{u^l : l_j \in \lambda_j(\omega), j = 1, \dots, n\}, \omega \in \Omega.$$

• Thanks to the Fundamental Measurability Theorem, it suffices to show that, for an arbitrary open set $O \subset C(\mathbb{R}^2)$, the set

 $\{\omega: U(\omega) \cap O \neq \emptyset\}$

is measurable.

• After taking the sequence $\{l_j^k\}_{k \in \mathbb{N}}$, a **Castaing representation** of λ_i , we obtain

 $\{\omega: U(\omega) \cap O \neq \emptyset\} = \bigcup \left(u^{l_1^k, \dots, l_n^k} \right)^{-1} (O)$

- This set is measurable, since (3) holds and we conclude that (4) defines a random set.
- $\lambda_j, j = 1, \dots, n$ are random fields with Lipschitz continuous paths
 - Since the map $\lambda \mapsto u^{\lambda}$ is *continuous*, the map $\omega \mapsto u^{\lambda(\omega)}$ is *measurable* as the composition of continuous and measurable functions.
 - The stochastic solution is a random field as well.
 - If additionally such random fields depend on parameters that are **interval-valued**, they can be considered to be random sets. Hence, the solution is again a random set.

 $\mathcal{G}^{\Omega}(\mathbb{R}^n) = \mathcal{E}^{\Omega}_M(\mathbb{R}^n) / \mathcal{N}^{\Omega}(\mathbb{R}^n).$

Random fields with irregular paths

Idea: smooth out the paths without Lipschitz property and solve

 $(\partial_t + \Lambda(x, t, \omega)\partial_x)U = F(x, t)U(x, t) + G(x, t)$ (5) $U|\{t=0\} = A$

in the algebra of Colombeau generalized stochastic processes

- <u>Appropriate conditions</u>: initial data $A \in \mathcal{G}(\mathbb{R})$ is given • $F, G \in \mathcal{G}(\mathbb{R}^2), \Lambda \in \mathcal{G}^{\Omega}(\mathbb{R}^2)$
- *F* is *locally of logarithmic growth*, i.e. it has a representative $(f_{\varepsilon})_{\varepsilon}, \varepsilon \in (0,1)$ such that:

• for every compact $K \subset \mathbb{R}^2$ there exist $N \in \mathbb{N}, C, \varepsilon > 0$ with

 $\sup_{(x,t)\in K} |f_{\varepsilon}(x,t)| \le N \log\left(\frac{C}{\varepsilon}\right), 0 < \varepsilon < \varepsilon_0$

- Λ has a representative $(\Lambda_{\varepsilon})_{\varepsilon} \in \mathcal{E}_{M}^{\Omega}(\mathbb{R}^{2})$ with the property:
 - for almost all $\omega \in \Omega$ there exist $C, \varepsilon > 0$ such that

 $\sup_{(x,t)\in\mathbb{R}^2} |\Lambda_{\varepsilon}(x,t,\omega)| \le C, 0 < \varepsilon < \varepsilon_0$

If the Lipschitz continuity is **not satisfied**, method of characteristics can no longer be used, because the solution of system (2) need not exist.

References:[1] M.Oberguggenberger, D.Rajter. Stochastic differential equations driven by generalized positive noise. Publ. Inst.Math. Beograd, 77(91):7-19,2005 [2] M. Oberguggenberger. *Multiplication of Distributions and Applications to Partial Differential* Equations. Pitman Res. Notes Maths. 259, Longman, Harlow, 1992.

 Λ has a representative $(\tilde{\Lambda}_{\varepsilon})_{\varepsilon} \in \mathcal{E}_{M}^{\Omega}(\mathbb{R}^{2})$ with the property: • for almost all $\omega \in \Omega$, for every compact $K \subset \mathbb{R}^2$ there exist $N \in \mathbb{N}$, $C, \varepsilon_0 > 0$ such that

<u>Result</u>: There is a unique solution $U \in \mathcal{G}^{\Omega}(\mathbb{R}^2)$ of the problem (5).