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1 Motivation
In the information age a massive amount of data is available. It can be of great benefit to use
this existing data for secondary analysis instead of collecting new data, which might be time-
consuming and expensive. But what can be done if the required variables are not all accessible
in one single data set? The solution is given by statistical matching: With the aid of statistical
matching, information from different surveys can be combined.

2 Statistical Matching
Statistical matching (or data fusion) aims at the achievement of joint information on variables
that are on the one hand not jointly observed and on the other hand based on a disjoint set of
observation units [e.g. 2, p. 2].
Initial situation of partially overlapping data sets
The initial situation of statistical matching [e.g. 2] are two (or more) data sets, e.g. A and B
with nA or nB observations, respectively, that contain information on a set of common variables
X, and specific variables Y and Z which are not jointly observed. Furthermore, the observation
units in A and B are not the same.
The objective is, on the one hand, to estimate the joint probability distribution of all common
and specific variables (macro approach) or, on the other hand, to generate one synthetic data
set, that contains information on all variables of interest (micro approach).
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Conditional independence assumption to achieve an identifiable joint distribution
It is common practice to use statistical matching strategies that are premised on the re-
strictive assumption of conditional independence (CIA), i.e. the independence of Y and Z
given X. This technical assumption makes the joint distribution of X, Y and Z identifiable
for A ∪ B ∈ R(nA+nB)×(P+Q+R), where A ∪ B is an incomplete i.i.d. sample from f (x, y, z) CIA=
fY|X(y |x) fZ|X(z|x) fX(x) without joint information on X, Y and Z [e.g. 2, p. 13].

Maximum likelihood estimation under the CIA
Given the CIA, the observed likelihood function of A ∪ B in the parametric framework is given
by

L(θ|A ∪ B) =
nA∏

a=1
fXY(xa, ya; θXY)

nB∏
b=1

fXZ(xb, zb; θXZ)

=
nA∏

a=1
fY|X(ya|xa; θY|X)

nB∏
b=1

fZ|X(zb|xb; θZ|X)
nA∏

a=1
fX(xa; θX)

nB∏
b=1

fX(xb; θX),
where f can either be a density function or a probability distribution.
Although A∪B is an incomplete data set, the maximum likelihood estimators θ̂X, θ̂Y|X, and θ̂Z|Xcan directly be estimated from it [e.g. 2, p. 14], where θY|X and θZ|X denote the parameters of
the conditional distributions.

3 Probabilistic Graphical Models
Probabilistic graphical models aim at the compact representation of complex distributions over
a possibly high-dimensional space by exploiting the (conditional) independences among the con-
cerned random variables [e.g. 3, p. 3].
Bayesian networks
A Bayesian network over a set of random variables X = {X1, . . . , Xp} is composed of a global
probability distribution and a directed acyclic graph G = (N, A), where
I each random variable Xi ∈ X is depicted by a node ni ∈ N, and
I the dependence relations among the random variables, i.e. the direct influence of one node

on another [e.g. 3, pp. 51], are illustrated by the set of directed edges A.
Global probability distribution
Taking into account the so-called Markov property, which states that every variable is con-
ditionally independent of its non-descendants given its parents, and the chain rule, the joint
probability distribution over X can be obtained by the product over the local conditional prob-
ability distributions as follows

P(x) = P(x1, . . . , xp) =
p∏

i=1
P(xi |pa(Xi )).

The term P(xi |pa(Xi )) denotes the conditional probability of Xi = xi , where Pa(Xi ) represents the
parent nodes of Xi , and pa(Xi ) its realizations.
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4 Probabilistic Graphical Models for Statistical Matching
Here, it is proposed to perform statistical matching by graphical network models. This might be
a promising alternative to existing statistical matching approaches, since probabilistic graphical
models provide a natural form of representing conditional independence.
The basic idea is composed by the following two steps:
Step 1: Create one network on each of the data sets to be matched
Step 2: Link the networks to one single network and estimate the global probability distribution
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5 Simulation
Simulation design
I Data set A

with nA = 3500 observations

X

Y

where x ∈ {0, 1}

where y ∈ {0, 1}

I Data set B
with nB = 1500 observations

X

Z

where x ∈ {0, 1}

where z ∈ {0, 1}

I (Conditional) probability distribution:
x = 0:

Z = 0 Z = 1
Y = 0 0.8075 0.0425 0.85
Y = 1 0.1425 0.0075 0.15

0.95 0.05 1

x = 1:
Z = 0 Z = 1

Y = 0 0.525 0.175 0.7
Y = 1 0.225 0.075 0.3

0.75 0.25 1
Macro approach
Estimation of the joint probability distribution

PX ,Y ,Z (x , y , z) =PX (x )PY |X (y |x )PZ |X (z |x )

can be estimated from A and B
can be estimated from A

can be estimated from B

Micro approach
Substitution of the missing values of Z in A by draws from the posterior

PZ |X ,Y (Z |x , y ) = PX ,Y ,Z (x , y , Z )
PX ,Y (x , y ) = PX ,Y ,Z (x , y , Z )∑

z
PX ,Y ,Z (x , y , z)

= PX (x )PY |X (y |x )PZ |X (Z |x )
PX (x )PY |X (y |x )PZ |X (0|x ) + PX (x )PY |X (y |x )PZ |X (1|x )

[Analogous procedure for the imputation of the missing values of Y in B.]
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Further Research
Credal networks
The next step will be the application of credal networks [e.g. 1] to match partially overlapping
data sets. This approach offers decisive advantages: On the one hand, the strict conditional
independence assumption can be weakened by using independence concepts for conditional
credal sets. On the other hand, the uncertainty of the statistical matching process can be
taken into consideration by sets of compatible contingency tables.

Combination of differing network structures or parameter estimates
Furthermore, the combination of possibly differing network structures of xA and xB require
further investigations. Feasible solutions are provided by graph union, graph intersection, or
model averaging. Also the opportunity of varying parameter estimates on the two data sets A
and B need to be taken into account.

Continuous and hybrid network models
Moreover, the extension to continuous and hybrid network models is planned, starting with
Gaussian Bayesian networks and networks for exponential families.
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