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2. Background: Some finite decision theory
We consider the standard model of finite decision theory:
•A = {a1, . . . , an}, n ∈ N (set of actions)
•Θ = {θ1, . . . , θm}, m ∈ N (states of nature)
• u : A× Θ→ R (cardinal utility function)

Naturally, the utility function associates
• every action a ∈ A with a gamble ua on (Θ, 2Θ):

ua : Θ→ R , θ 7→ u(a, θ) (1)

• every state θ ∈ A with a variable uθ on (A, 2A):

uθ : A→ R , a 7→ u(a, θ) (2)

With uij := u(ai, θj), we represent the model by its utility matrix:

θ1 . . . . . . θm

a1 u11 . . . . . . u1m

a2 u21 . . . . . . u2m

...
... . . . . . .

...
an un1 . . . . . . unm

ua1 : Θ → R

uan : Θ → R

uθ1 : A → R uθm : A → R

...

. . .

associated

associated random variables

gambles

1

Depending on the context, we also allow for choosing randomized ac-
tions, i.e. classical probability measures on (A, 2A). We denote the set
of all randomized actions by G(A).

The utility function u is then extended to a utility function G(u) on
G(A)×Θ by assigning each pair (λ, θ) the expectation of the random
variable uθ under the measure λ, i.e. Eλ

[
uθ
]
.

Every pure action a ∈ A then can uniquely be identified with the
Dirac-measure δa ∈ G(A) and we have u(a, θ) = G(u)(δa, θ) for
all (a, θ) ∈ A × Θ. Further, also (1) can easily be extended to ran-
domized actions by defining, for every λ ∈ G(A) fixed, G(u)λ(θ) :=
G(u)(λ, θ) for all θ ∈ Θ.

3. A criterion from classical decision theory
Apart from the border cases of maximizing expected utility w.r.t. a
precise prior and the maximin-criterion, classical decision theory tries
to cope with decision making under vague information, too: The cri-
terion of Hodges and Lehmann allows the decision maker to model
his degree of trust in the prior by a parameter α ∈ [0, 1].

Specifically, if π is a probability measure on (Θ, 2Θ), a randomized
action λ∗ ∈ G(A) is said to be Hodges-Lehmann-optimal w.r.t. π and
α (short: Φπ,α-optimal), if Φπ,α(λ∗) > Φπ,α(λ) for all λ ∈ G(A),
where

Φπ,α(λ) := (1− α) ·min
θ
G(u)(λ, θ) + α · Eπ

[
G(u)λ

]
(3)

Theorem 1 describes an algorithm determining a randomized Hodges-
Lehmann-actions for arbitrary pairs (π, α).

Theorem 1. Consider the linear programming problem

(1− α) · (w1 − w2) + α ·
n∑
i=1

Eπ(uai) · pi −→ max
(w1,w2,p1,...,pn)

(4)

with constraints (w1, w2, p1, . . . , pn) > 0 and

•∑n
i=1 pi = 1

•w1 − w2 6
∑n
i=1 uij · pi for all j = 1, . . . ,m.

Then the following holds:

i) Every optimal solution (w∗1, w
∗
2, p
∗
1, . . . , p

∗
n) to (4) induces a

Φπ,α-optimal randomized action λ∗ ∈ G(A) by setting
λ∗({ai}) := p∗i .

ii) There always exists an Φπ,α-optimal randomized action.

By applying duality theory, we receive the following Corollary. Its
proof can be interpreted as a method to construct priors that take the
actor’s scepticism about π (expressed by α) into account.

Corollary 1. Let λ∗ ∈ G(A) denote a Φπ,α-optimal randomized ac-
tion. Then, there exists a probability measure µπ,α on (Θ, 2Θ) and
a pure action a∗ ∈ A such that

Φπ,α(λ∗) = Eµπ,α[ua∗] (5)

4. Linear partial information

Kofler and Menges’ theory of linear partial information (see [4]) as-
sumes the uncertainty underlying the decision situation to be express-
able by a convex credal setM on (Θ, 2Θ) of the form

M :=
{
π| bs 6 Eπ(fs) 6 bs ∀s = 1, ..., r

}
(6)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R2 such that bs 6 bs and
fs : Θ→ R. Note that these sets correspond to the credal sets induced
by finite sets of gambles K from Walley’s theory.

Here, criteria for decision making strongly depend on the actor’s at-
titude towards ambiguity, i.e. the non-stochastic uncertainty between
the measures contained inM. Accordingly, many concurring criteria
exist (see for instance [3]). Linear programming based results for a
selection of them are presented in the following sections.

5. Checking maximality of pure actions

An action a∗ ∈ A is said to beM-maximal, if

∀ a ∈ A ∃ πa ∈M : Eπa(ua∗) > Eπa(ua) (7)

Naturally, the above definition extends to randomized actions. For ran-
domized actions,M-maximality and E(M)-admissibility coincide. A
algorithm for determining the set of all randomized E(M)-admissible
actions has been introduced in [1, section 5.2].

However, for finite A, being M-maximal is a strictly weaker con-
dition and, therefore, needs to be checked seperatly from E(M)-
admissibility. Theorem 2 describes a linear programming based al-
gorithm for checkingM-maximality of a pure a∗ ∈ A.

Theorem 2. Let (A,Θ, u(·)) denote a finite decision problem and let
M be of the form (6). Consider the linear program

n∑
i=1

( m∑
j=1

iγj

)
−→ max

(1γ1,...,nγm)
(8)

with constraints (1γ1, . . . ,
n γm) > 0 and

•∑m
j=1

iγj 6 1 for all i = 1, . . . , n

• bs 6
∑m
j=1 fs(θj) · iγj 6 bs for all s = 1, ..., r, i = 1, . . . , n

•∑m
j=1(uij − u∗j) · iγj 6 0 for all i = 1, . . . , n

Then a∗ ≈ (u∗1, . . . , u∗m) ∈ A isM-maximal iff the optimal out-
come of (8) equals n.

6. Γ-Maximin and least favourable priors

For a probability measure π on (Θ, 2Θ), let B(π) denote the Bayes-
utility w.r.t. π (that is B(π) = Eπ(ua∗), where a∗ ∈ A denotes an
arbitrary Bayes-action w.r.t. π). The set of all Bayes-actions w.r.t. π
is denoted by Aπ.

If M is a credal set of the form defined in (6), we call π− ∈ M a
least favourable prior (lfp) fromM iff B(π−) 6 B(π) holds for all
π ∈ M. Theorem 3 describes a linear programming approach for
determining a least favourable prior fromM.

Theorem 3. Let (A,Θ, u(·)) denote a decision problem and letM
be of the form (6). Consider the linear program

w1 − w2 −→ min
(w1,w2,π1,...,πm)

(9)

with constraints (w1, w2, π1, . . . , πm) > 0 and

•∑m
j=1 πj = 1

• bs 6
∑m
j=1 fs(θj) · πj 6 bs for all s = 1, ..., r

•w1 − w2 >
∑m
j=1 uij · πj for all i = 1, . . . n

Then the following holds:

i) Every optimal solution (w∗1, . . . , π
∗
m) to (9) induces a least

favourable prior π− ∈M by setting π−({θj}) := π∗j .

ii) There always exists a least favourable prior.

Next, we show some connections between least favourable priors and
randomized Γ-Maximin actions. We start by recalling the Γ-Maximin
criterion: A randomized action λ∗ ∈ G(A) is said to be M-Maximin

optimal iff for all λ ∈ G(A):

min
π∈M

Eπ
[
G(u)λ∗

]
> min
π∈M

Eπ
[
G(u)λ

]
(10)

It turns out that the linear program from Theorem 3 is dual to the one
for determining aM-Maximin optimal randomized action described
in [1, section 3.2]. Together with the complementary slackness prop-
erty from linear optimization theory, this allows to derive deep con-
nections between least favourable priors and the Γ-Maximin criterion.

Theorem 4. Let (A,Θ, u(·)) denote a finite decision problem and let
M be of the form (6). Then the following holds:

i) If π− is a lfp from M, then for all optimal randomized M-
Maximin actions λ∗ ∈ G(A) we have λ∗({a}) = 0 for all
a ∈ A \ Aπ−.

ii) Let λ∗ ∈ G(A) be an optimal randomized M-Maximin action.
If, for a ∈ A, we have λ∗({a}) > 0, then a ∈ Aπ− for all least
favourable priors π− fromM.

iii) Let π− denote a lfp from M and let λ∗ ∈ G(A) denote a ran-
domizedM-Maximin action. Then for all a ∈ Aπ− we have

Eπ−
[
ua
]

= EM
[
G(u)λ∗

]
As an immediate consequence of Theorem 4, we can specify condi-
tions under which randomization cannot improve utility, if optimality
is defined in terms of the Γ-maximin criterion.

Corollary 2. If there exists a least favourable prior π− from M
such that Aπ− = {az} for some z ∈ {1, . . . , n}, then δaz ∈ G(A) is
the unique randomizedM-Maximin action. Particularly, random-
ization is unnecessary in such situations.

7. A toy example

Consider the decision problem given by the table

uij θ1 θ2 θ3 θ4
a1 20 15 10 5
a2 30 10 10 20
a3 20 40 0 20

and assume that uncertainty is described by the credal set

M :=
{
π| 0.3 6 π2 + π3 6 0.7

}
• Section 6: Applying the algorithm from Theorem 3 gives the op-

timal solution (13, 0, 0, 0, 0.7, 0.3). Thus, a least favourable prior
π− from M is induced by the vector (0, 0.7, 0.3, 0). Simple com-
putation gives Aπ− = {a2}. Therefore, according to Corollary 2,
a2 is the uniqueM-Maximin action (even compared to randomized
actions) with utility 13.

• Section 5: Resolving the linear programming problem from The-
orem 2 for actions a1, a2 and a3 gives optimal value 3 for each of
them. Thus, all available actions areM-maximal.

• Section 3: Let τ denote the prior on (Θ, 2Θ) induced by
(0.2, 0.7, 0.05, 0.05) and let our trust in τ be expressed by α = 0.3.
Resolving the linear programming problem from Theorem 1 then
gives the optimal solution (8, 0, 0.8, 0, 0.2). Thus, a Φτ,0.3-optimal
randomized action λ∗ ∈ G(A) is induced by (0.8, 0, 0.2).
Next, we can use the constructive proof of Corollary 1 to compute
the measure µτ,0.3 on (Θ, 2Θ) defined in Corollary 1. The measure
µτ,0.3 is induced by the vector (0.070, 0.245, 0.656, 0.029).

Implementation: The R-code for the toy example is available on
http://www.statistik.lmu.de/∼ cjansen/index.html

Outlook: Future research
Investigating further consequences of Theorem 4: What can we learn
by restricting the set M to special cases (for instance comparative
probability or non-degenerated credal sets)?
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