Decision theory meets linear optimization beyond computation

Christoph Jansen & Thomas Augustin, Department of Statistics, University of Munich

Contact: christoph.jansen@stat.uni-muenchen.de augustin@stat.uni-muenchen.de

1. Guideline through the poster

By applying *duality* theory, we receive the following Corollary. Its proof can be interpreted as a method to construct priors that take the actor's *scepticism about* π (expressed by α) into account.

Corollary 1. Let $\lambda^* \in G(\mathbb{A})$ denote a $\Phi_{\pi,\alpha}$ -optimal randomized action. Then, there exists a probability measure $\mu_{\pi,\alpha}$ on $(\Theta, 2^{\Theta})$ and a pure action $a^* \in \mathbb{A}$ such that

$$\Phi_{\pi,\alpha}(\lambda^*) = \mathbb{E}_{\mu_{\pi,\alpha}}[u_{a^*}]$$

(5)

(8)

(9)

4. Linear partial information

optimal iff for all $\lambda \in G(\mathbb{A})$:

$$\min_{\pi \in \mathcal{M}} \mathbb{E}_{\pi} [G(u)_{\lambda^*}] \ge \min_{\pi \in \mathcal{M}} \mathbb{E}_{\pi} [G(u)_{\lambda}]$$
(10)

It turns out that the linear program from Theorem 3 is *dual* to the one for determining a \mathcal{M} -Maximin optimal randomized action described in [1, section 3.2]. Together with the *complementary slackness property* from linear optimization theory, this allows to derive deep connections between least favourable priors and the Γ -Maximin criterion.

Theorem 4. Let $(\mathbb{A}, \Theta, u(\cdot))$ denote a finite decision problem and let \mathcal{M} be of the form (6). Then the following holds:

i) If π^- is a lfp from \mathcal{M} , then for all optimal randomized \mathcal{M} -Maximin actions $\lambda^* \in G(\mathbb{A})$ we have $\lambda^*(\{a\}) = 0$ for all $a \in \mathbb{A} \setminus \mathbb{A}_{\pi^-}$.

2. Background: Some finite decision theory

We consider the standard model of *finite* decision theory: • $\mathbb{A} = \{a_1, \dots, a_n\}, n \in \mathbb{N} \text{ (set of actions)}$ • $\Theta = \{\theta_1, \dots, \theta_m\}, m \in \mathbb{N} \text{ (states of nature)}$ • $u : \mathbb{A} \times \Theta \to \mathbb{R} \text{ (cardinal utility function)}$ Naturally, the utility function associates • every action $a \in \mathbb{A}$ with a gamble u_a on $(\Theta, 2^{\Theta})$: $u_a : \Theta \to \mathbb{R} , \theta \mapsto u(a, \theta)$ • every state $\theta \in \mathbb{A}$ with a variable u^{θ} on $(\mathbb{A}, 2^{\mathbb{A}})$: $u^{\theta} : \mathbb{A} \to \mathbb{R} , a \mapsto u(a, \theta)$

With $u_{ij} := u(a_i, \theta_j)$, we represent the model by its *utility matrix*:

Kofler and *Menges*' theory of *linear partial information* (see [4]) assumes the uncertainty underlying the decision situation to be expressable by a *convex credal set* \mathcal{M} on $(\Theta, 2^{\Theta})$ of the form

 $\mathcal{M} := \left\{ \pi | \ \underline{b}_s \leqslant \mathbb{E}_{\pi}(f_s) \leqslant \overline{b}_s \ \forall s = 1, ..., r \right\}$ (6)

where, for all s = 1, ..., r, we have $(\underline{b}_s, \overline{b}_s) \in \mathbb{R}^2$ such that $\underline{b}_s \leq \overline{b}_s$ and $f_s : \Theta \to \mathbb{R}$. Note that these sets correspond to the credal sets induced by finite sets of gambles \mathcal{K} from Walley's theory.

Here, criteria for decision making strongly depend on the actor's *attitude towards ambiguity*, i.e. the non-stochastic uncertainty between the measures contained in \mathcal{M} . Accordingly, many concurring criteria exist (see for instance [3]). Linear programming based results for a selection of them are presented in the following sections.

5. Checking maximality of pure actions

An action $a^* \in \mathbb{A}$ is said to be \mathcal{M} -maximal, if

 $\forall a \in \mathbb{A} \ \exists \pi_a \in \mathcal{M} : \quad \mathbb{E}_{\pi_a}(u_{a^*}) \geqslant \mathbb{E}_{\pi_a}(u_a) \tag{7}$

Naturally, the above definition extends to randomized actions. For randomized actions, \mathcal{M} -maximality and $E(\mathcal{M})$ -admissibility coincide. A algorithm for determining the set of all randomized $E(\mathcal{M})$ -admissible actions has been introduced in [1, section 5.2].

However, for finite \mathbb{A} , being \mathcal{M} -maximal is a strictly weaker condition and, therefore, needs to be checked seperatly from $\mathbb{E}(\mathcal{M})$ -admissibility. Theorem 2 describes a linear programming based algorithm for checking \mathcal{M} -maximality of a pure $a^* \in \mathbb{A}$.

ii) Let $\lambda^* \in G(\mathbb{A})$ be an optimal randomized \mathcal{M} -Maximin action. If, for $a \in \mathbb{A}$, we have $\lambda^*(\{a\}) > 0$, then $a \in \mathbb{A}_{\pi^-}$ for all least favourable priors π^- from \mathcal{M} .

iii) Let π^- denote a lfp from \mathcal{M} and let $\lambda^* \in G(\mathbb{A})$ denote a randomized \mathcal{M} -Maximin action. Then for all $a \in \mathbb{A}_{\pi^-}$ we have

 $\mathbb{E}_{\pi^{-}}[u_{a}] = \underline{\mathbb{E}}_{\mathcal{M}}[G(u)_{\lambda^{*}}]$

As an immediate consequence of Theorem 4, we can specify conditions under which randomization cannot improve utility, if optimality is defined in terms of the Γ -maximin criterion.

Corollary 2. If there exists a least favourable prior π^- from \mathcal{M} such that $\mathbb{A}_{\pi^-} = \{a_z\}$ for some $z \in \{1, \ldots, n\}$, then $\delta_{a_z} \in G(\mathbb{A})$ is the unique randomized \mathcal{M} -Maximin action. Particularly, randomization is unnecessary in such situations.

7. A toy example

Consider the decision problem given by the table

u_{ij}	θ_1	$ heta_2$	θ_3	$ heta_4$
a_1	20	15	10	5
a_2	30	10	10	20
a_3	20	40	0	20

associated random variables

Depending on the context, we also allow for choosing *randomized actions*, i.e. classical probability measures on $(\mathbb{A}, 2^{\mathbb{A}})$. We denote the set of all randomized actions by $G(\mathbb{A})$.

The utility function u is then extended to a utility function G(u) on $G(\mathbb{A}) \times \Theta$ by assigning each pair (λ, θ) the expectation of the random variable u^{θ} under the measure λ , i.e. $\mathbb{E}_{\lambda}[u^{\theta}]$.

Every *pure* action $a \in \mathbb{A}$ then can uniquely be identified with the *Dirac-measure* $\delta_a \in G(\mathbb{A})$ and we have $u(a, \theta) = G(u)(\delta_a, \theta)$ for all $(a, \theta) \in \mathbb{A} \times \Theta$. Further, also (1) can easily be extended to randomized actions by defining, for every $\lambda \in G(\mathbb{A})$ fixed, $G(u)_{\lambda}(\theta) := G(u)(\lambda, \theta)$ for all $\theta \in \Theta$.

3. A criterion from classical decision theory

Apart from the border cases of *maximizing expected utility* w.r.t. a precise prior and the *maximin-criterion*, classical decision theory tries to cope with decision making under vague information, too: The criterion of *Hodges and Lehmann* allows the decision maker to model his *degree of trust* in the prior by a parameter $\alpha \in [0, 1]$.

Specifically, if π is a probability measure on $(\Theta, 2^{\Theta})$, a randomized action $\lambda^* \in G(\mathbb{A})$ is said to be *Hodges-Lehmann*-optimal w.r.t. π and α (short: $\Phi_{\pi,\alpha}$ -optimal), if $\Phi_{\pi,\alpha}(\lambda^*) \ge \Phi_{\pi,\alpha}(\lambda)$ for all $\lambda \in G(\mathbb{A})$, where

 $\Phi_{\pi,\alpha}(\lambda) := (1 - \alpha) \cdot \min_{\theta} G(u)(\lambda, \theta) + \alpha \cdot \mathbb{E}_{\pi} \left| G(u)_{\lambda} \right|$

(3)

(1)

(2)

Theorem 2. Let $(\mathbb{A}, \Theta, u(\cdot))$ denote a finite decision problem and let \mathcal{M} be of the form (6). Consider the linear program

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} i \gamma_j \right) \longrightarrow \max_{(1\gamma_1, \dots, n\gamma_m)}$$

with constraints $(^1\gamma_1, \ldots, ^n\gamma_m) \ge 0$ and

• $\sum_{j=1}^{m} {}^{i}\gamma_{j} \leq 1$ for all i = 1, ..., n• $\underline{b}_{s} \leq \sum_{j=1}^{m} f_{s}(\theta_{j}) \cdot {}^{i}\gamma_{j} \leq \overline{b}_{s}$ for all s = 1, ..., r, i = 1, ..., n

• $\sum_{j=1}^{m} (u_{ij} - u_{*j}) \cdot {}^{i}\gamma_{j} \leq 0$ for all $i = 1, \dots, n$ Then $a^{*} \approx (u_{*1}, \dots, u_{*m}) \in \mathbb{A}$ is *M*-maximal iff the opt

Then $a^* \approx (u_{*1}, \ldots, u_{*m}) \in \mathbb{A}$ is \mathcal{M} -maximal iff the optimal outcome of (8) equals n.

6. Γ -Maximin and least favourable priors

For a probability measure π on $(\Theta, 2^{\Theta})$, let $B(\pi)$ denote the Bayesutility w.r.t. π (that is $B(\pi) = \mathbb{E}_{\pi}(u_{a^*})$, where $a^* \in \mathbb{A}$ denotes an arbitrary Bayes-action w.r.t. π). The set of all Bayes-actions w.r.t. π is denoted by \mathbb{A}_{π} .

If \mathcal{M} is a credal set of the form defined in (6), we call $\pi^- \in \mathcal{M}$ a *least favourable prior (lfp)* from \mathcal{M} iff $B(\pi^-) \leq B(\pi)$ holds for all $\pi \in \mathcal{M}$. Theorem 3 describes a linear programming approach for determining a least favourable prior from \mathcal{M} .

Theorem 3. Let $(\mathbb{A}, \Theta, u(\cdot))$ denote a decision problem and let \mathcal{M} be of the form (6). Consider the linear program

and assume that uncertainty is described by the credal set

$\mathcal{M} := \left\{ \pi | \quad 0.3 \leqslant \pi_2 + \pi_3 \leqslant 0.7 \right\}$

- Section 6: Applying the algorithm from Theorem 3 gives the optimal solution (13, 0, 0, 0, 0.7, 0.3). Thus, a least favourable prior π⁻ from M is induced by the vector (0, 0.7, 0.3, 0). Simple computation gives A_{π⁻} = {a₂}. Therefore, according to Corollary 2, a₂ is the unique M-Maximin action (even compared to randomized actions) with utility 13.
- Section 5: Resolving the linear programming problem from Theorem 2 for actions a_1, a_2 and a_3 gives optimal value 3 for each of them. Thus, all available actions are \mathcal{M} -maximal.
- Section 3: Let τ denote the prior on (Θ, 2^Θ) induced by (0.2, 0.7, 0.05, 0.05) and let our trust in τ be expressed by α = 0.3. Resolving the linear programming problem from Theorem 1 then gives the optimal solution (8, 0, 0.8, 0, 0.2). Thus, a Φ_{τ,0.3}-optimal randomized action λ* ∈ G(A) is induced by (0.8, 0, 0.2).
- Next, we can use the *constructive* proof of Corollary 1 to compute the measure $\mu_{\tau,0.3}$ on $(\Theta, 2^{\Theta})$ defined in Corollary 1. The measure $\mu_{\tau,0.3}$ is induced by the vector (0.070, 0.245, 0.656, 0.029).

Implementation: The R-code for the toy example is available on http://www.statistik.lmu.de/~ cjansen/index.html

Outlook: Future research

Investigating further consequences of Theorem 4: What can we learn by restricting the set \mathcal{M} to special cases (for instance *comparative*

Theorem 1 describes an algorithm determining a randomized Hodges-Lehmann-actions for arbitrary pairs (π, α) .

Theorem 1. *Consider the linear programming problem*

 $(1-\alpha)\cdot(w_1-w_2)+\alpha\cdot\sum_{i=1}^n \mathbb{E}_{\pi}(u_{a_i})\cdot p_i \longrightarrow \max_{(w_1,w_2,p_1,\dots,p_n)}$ (4)

with constraints $(w_1, w_2, p_1, \dots, p_n) \ge 0$ and • $\sum_{i=1}^n p_i = 1$ • $w_1 - w_2 \le \sum_{i=1}^n u_{ij} \cdot p_i$ for all $j = 1, \dots, m$.

Then the following holds:

i) Every optimal solution $(w_1^*, w_2^*, p_1^*, \dots, p_n^*)$ to (4) induces a $\Phi_{\pi,\alpha}$ -optimal randomized action $\lambda^* \in G(\mathbb{A})$ by setting $\lambda^*(\{a_i\}) := p_i^*$.

ii) There always exists an $\Phi_{\pi,\alpha}$ -optimal randomized action.

$$w_1 - w_2 \longrightarrow \min_{(w_1, w_2, \pi_1, \dots, \pi_m)}$$

with constraints $(w_1, w_2, \pi_1, \ldots, \pi_m) \ge 0$ and

• $\sum_{j=1}^{m} \pi_j = 1$ • $\underline{b}_s \leq \sum_{j=1}^{m} f_s(\theta_j) \cdot \pi_j \leq \overline{b}_s \text{ for all } s = 1, ..., r$ • $w_1 - w_2 \geq \sum_{j=1}^{m} u_{ij} \cdot \pi_j \text{ for all } i = 1, ..., n$

Then the following holds:

i) Every optimal solution (w₁^{*},...,π_m^{*}) to (9) induces a least favourable prior π⁻ ∈ M by setting π⁻({θ_j}) := π_j^{*}. *ii*) There always exists a least favourable prior.

Next, we show some connections between least favourable priors and randomized Γ -Maximin actions. We start by recalling the Γ -Maximin criterion: A randomized action $\lambda^* \in G(\mathbb{A})$ is said to be *M*-Maximin probability or non-degenerated credal sets)?

References

- [1] L.V. Utkin, T. Augustin. Powerful algorithms for decision making under partial prior information and general ambiguity attitudes. In: F.G. Cozman, R. Nau, T. Seidenfeld (eds.): *ISIPTA '05*, 2005, pp. 349-358.
- [2] D. Kikuti, F.G. Cozman, C.P. de Campos. Partially ordered preferences in decision trees: computing strategies with imprecision in probabilities. In: R. Brafman, U. Junker (eds.): *Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling*, 2005, pp. 118-123.
- [3] N. Huntley, R. Hable, M.C.M. Troffaes. Decision making. In: *Introduction to imprecise probabilities*. Ed. by T. Augustin, F.P.A. Coolen, G. de Cooman, M.C.M. Troffaes. Chichester: Wiley, 2014, pp. 190-206.
- [4] E. Kofler, G. Menges. *Entscheiden bei unvollständiger Information*. Springer. Berlin (Lecture Notes in Economics and Mathematical Systems, 136), 1976.
- [5] Hodges, Joseph L. and Lehmann, Erich L. The use of Previous Experience in Reaching Statistical Decisions. In: *The Annals of Mathematical Statistics* 23.3 (1952), pp. 396407.