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2. Background: Some finite decision theory

We consider the standard model of finite decision theory:
e A ={ay,...,an}, n € N (set of actions)
eO =1{04,...,0}, m €N (states of nature)
eu: A X O — R (cardinal utility function)

Naturally, the utility function associates

e cvery action a € A with a gamble u, on (6, 29):

Ug O >R | 0+ u(a,b) (1)
o every state § € A with a variable u? on (A, 24):
WA SR a— u(a,f) (2)
With u;; := u(a;, 0;), we represent the model by its utility matrix:
0, | ...... 0.,
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associated random variables

Depending on the context, we also allow for choosing randomized ac-
tions, i.e. classical probability measures on (A, QA). We denote the set
of all randomized actions by G(A).

The utility function w is then extended to a utility function G(u) on
G(A) x O by assigning each pair (), ) the expectation of the random
variable u? under the measure \, i.e. E A\ [ue} :

Every pure action a € A then can uniquely be identified with the
Dirac-measure 6, € G(A) and we have u(a,0) = G(u)(dq, ) for
all (a,0) € A x ©. Further, also (1) can easily be extended to ran-
domized actions by defining, for every A € G(A) fixed, G(u))(0) :=
G(u)(A,0) forall § € ©.

3. A criterion from classical decision theory

Apart from the border cases of maximizing expected utility w.r.t. a
precise prior and the maximin-criterion, classical decision theory tries
to cope with decision making under vague information, too: The cri-
terion of Hodges and Lehmann allows the decision maker to model
his degree of trust in the prior by a parameter o € [0, 1].

Specifically, if 7 is a probability measure on (O, 2@), a randomized
action \* € G(A) is said to be Hodges-Lehmann-optimal w.r.t. 7 and
a (short: g o-optimal), if $r o(A*) = Dr o(A) for all A € G(A),
where

bra(A) = (1 - a) - minG(u)(\,0) + a- Er [G(u) A} (3)

Theorem 1 describes an algorithm determining a randomized Hodges-
Lehmann-actions for arbitrary pairs (7, «).

Theorem 1. Consider the linear programming problem
n
(1—a)- (w; —wy) + a- ZEW(U’@@') P — max 4)
i=1 (w17w27p17'“7pn)
with constraints (w1, w9, p1, .. .,pn) = 0 and

°) iL1pi=1

owy —wy < Y g uj-p; forallj=1,... m.

Then the following holds:

i) Every optimal solution (w},ws,p7,...,py) to (4) induces a
O o-optimal randomized action \* € G(A) by setting
AN ({ait) = ;-

i) There always exists an O -optimal randomized action.

By applying duality theory, we receive the following Corollary. Its
proof can be interpreted as a method to construct priors that take the
actor’s scepticism about 7 (expressed by «) into account.

Corollary 1. Let \* € G(A) denote a O o-optimal randomized ac-

tion. Then, there exists a probability measure [i; o on (O, 26) and
a pure action a™ € A such that

Or a(XY) = Ey,  [uar] (5)

4. Linear partial information

Kofler and Menges’ theory of linear partial information (see [4]) as-
sumes the uncertainty underlying the decision situation to be express-
able by a convex credal set M on (©,2°) of the form

M ‘= {7T| QS < ]E'7T<f3> < ES \V/S — 17 °°°7T} (6)

where, for all s = 1, ..., r, we have (b,, bs) € R? such that b, < bs and
fs : © — R. Note that these sets correspond to the credal sets induced
by finite sets of gambles /C from Walley’s theory.

Here, criteria for decision making strongly depend on the actor’s at-
titude towards ambiguity, 1.e. the non-stochastic uncertainty between
the measures contained in M. Accordingly, many concurring criteria
exist (see for instance [3]). Linear programming based results for a
selection of them are presented in the following sections.

5. Checking maximality of pure actions

An action a™ € A is said to be M-maximal, if
Vaec A dmge M Ep (ugs) 2 Er (ug) (7)

Naturally, the above definition extends to randomized actions. For ran-
domized actions, M-maximality and E(,M )-admissibility coincide. A
algorithm for determining the set of all randomized E(M )-admissible
actions has been introduced 1n [1, section 5.2].

However, for finite A, being M-maximal is a strictly weaker con-
dition and, therefore, needs to be checked seperatly from E(M)-
admissibility. Theorem 2 describes a linear programming based al-
gorithm for checking M-maximality of a pure a* € A.

Theorem 2. Let (A, ©, u(-)) denote a finite decision problem and let
M be of the form (6). Consider the linear program

n m

> (D) — max (8)

1 n
i=1 ]’:1 (717---7 ’Vm)

with constraints (11, ..., vm) > 0 and

oZﬂliyj <1 foralli=1,...,n

° b, < 7L fs(0)) -ifyj <bs foralls=1,..,r,i=1,...,n
o > iLi(ujj — uyy) -i’yj <0 foralli=1,...,n

Then a* =~ (U, ..., Usm) € A is M-maximal iff the optimal out-
come of (8) equals n.

6. | -Maximin and least favourable priors

For a probability measure 7 on (©,2°9), let B(w) denote the Bayes-
utility w.r.t. 7 (that is B(w) = Ex(ug*), where a* € A denotes an
arbitrary Bayes-action w.r.t. 7). The set of all Bayes-actions w.r.t. m
is denoted by A ;.

If M 1is a credal set of the form defined in (6), we call 7= € M a
least favourable prior (Ifp) from M iff B(n~) < B(m) holds for all
m € M. Theorem 3 describes a linear programming approach for
determining a least favourable prior from M.

Theorem 3. Let (A, O, u(-)) denote a decision problem and let M
be of the form (6). Consider the linear program

W] — wy — min 9)
(wl,wg,m,...,wm)

with constraints (wy, wo, T, ..., Tm) = 0 and

o Z;nzl T =1
obh, < E:;n:l fs(0;) -mj <bs foralls=1,..r
owy —wo =Y iy mjforalli=1,...n
Then the following holds:

X

i) Every optimal solution (w7,...,m),) to (9) induces a least
favourable prior 1~ € M by setting 7~ ({0,}) := 7T;-<.

ii) There always exists a least favourable prior.

Next, we show some connections between least favourable priors and
randomized ['-Maximin actions. We start by recalling the I'-Maximin
criterion: A randomized action \* € G(A) is said to be M-Maximin
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optimal iff for all A € G(A):

min Er[Gu)y]> min Ex|Glu)] (10)
It turns out that the linear program from Theorem 3 1s dual to the one
for determining a M-Maximin optimal randomized action described
in [1, section 3.2]. Together with the complementary slackness prop-
erty from linear optimization theory, this allows to derive deep con-
nections between least favourable priors and the ['-Maximin criterion.

Theorem 4. Let (A, O, u(-)) denote a finite decision problem and let
M be of the form (6). Then the following holds:

I)If 7= is a lfp from M, then for all optimal randomized M-
Maximin actions \* € G(A) we have \*({a}) = 0 for all
aeA\A_-.

ii) Let \* € G(A) be an optimal randomized M-Maximin action.

If, for a € A, we have \*({a}) > 0, then a € A_- for all least
favourable priors ©~ from M.

iii) Let m~ denote a lfp from M and let \* € G(A) denote a ran-
domized M-Maximin action. Then for all a € A - we have

B [ua] = Epq|G(u) ]

As an immediate consequence of Theorem 4, we can specity condi-
tions under which randomization cannot improve utility, if optimality
1s defined 1n terms of the I'-maximin criterion.

Corollary 2. If there exists a least favourable prior m— from M
such that A - = {a,} for some z € {1,...,n}, then §,. € G(A) is
the unique randomized M-Maximin action. Particularly, random-
ization is unnecessary in such situations.

7. A toy example

Consider the decision problem given by the table

u;] 0, 6,65 6,
a, 2015 10 5
a, 30 10110 20
a; 20 40| 0 20

and assume that uncertainty 1s described by the credal set
M :={r| 0.3 < m+m < 0.7}

e Section 6: Applying the algorithm from Theorem 3 gives the op-
timal solution (13,0,0,0,0.7,0.3). Thus, a least favourable prior
n~ from M is induced by the vector (0,0.7,0.3,0). Simple com-
putation gives A_- = {a,}. Therefore, according to Corollary 2,
a, 1s the unique M-Maximin action (even compared to randomized
actions) with utility 13.

e Section 5: Resolving the linear programming problem from The-
orem 2 for actions aj,as and as gives optimal value 3 for each of
them. Thus, all available actions are M-maximal.

e Section 3: Let 7 denote the prior on (6,29) induced by
(0.2,0.7,0.05,0.05) and let our trust in 7 be expressed by o = 0.3.
Resolving the linear programming problem from Theorem 1 then
gives the optimal solution (8,0, 0.8,0,0.2). Thus, a ®, ( 3-optimal
randomized action A* € G(A) is induced by (0.8, 0,0.2).

Next, we can use the constructive proof of Corollary 1 to compute

the measure /i, ()3 on (O, 29) defined in Corollary 1. The measure
{47.0.3 is induced by the vector (0.070, 0.245, 0.656, 0.029).

Outlook: Future research

Investigating further consequences of Theorem 4: What can we learn
by restricting the set M to special cases (for instance comparative
probability or non-degenerated credal sets)?
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