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to study the relationship between

m specification language and

m complexity in Boolean credal networks.



Credal networks

m Directed acyclic graph, where each node is a random variable
with associated “local” credal sets, with associated Markov

condition.

OO

m We focus on the strong extension:

{IP’ P(X HIP’ i = xj|pa(X ):77,-)}.



Complexity

m Marginal inference: P(Xq = xg|Xg = xg) > 7?7

m INF4(C): the inference problem for a class C of networks;
INF} (C) when evidence is positive (that is, {X = true} is
observed).
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m Marginal inference: P(Xq = xg|Xg = xg) > 7?7

m INF4(C): the inference problem for a class C of networks;
INF} (C) when evidence is positive (that is, {X = true} is
observed).

m In Bayesian networks: PP-complete problem.
m In strong extensions: NPPP—compIete problem.



Specification framework: Propositional

m Associate, with each (Boolean) variable X, either

m Equivalence X < F(Y1,..., Ym), where F is a sentence.
m Assessment P(X = true) € [a, B].

P(Xo =1)€[1/4,1/3] p(x;=1)=1/5
P(X, =1) >1/2

X4<=>X1/\X2®X5<:>X3/\X4
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m Every propositional credal network can be specified this way.



Propositional credal networks: Results

m Theorem: INF(Prop(A, (—))) is polynomial.

m Theorem: INF} (Prop(A,V,(—))) is NPPP-complete.



Relational credal networks

m Extend: parameterized variables, with logical variables over
(finite) domains.

m Example:

P(Xi(x) =1
P(Xa(x) =1
X3(x,y) =1
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X1(x) A Xa(x),

Yy : X3(x, y) A Xa(y).



Relational credal networks

m Extend: parameterized variables, with logical variables over
(finite) domains.
m Example:

P(Xi(x)=1) = 1/2,
P(Xao(x)=1) < [1/4,1/3],
P(Xs(x,y) =1) = 1/5,
Xa(x) < Xi(x) A Xa(x),
Xs(x) & Vy:Xs3(x,y) A Xa(y).

with domain D = {a, b}:

(X1(2)] Xs(a,a)| Xs(a, b)) (Xa(b, )| Xs(b, b))
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Relational credal networks: Semantics

m Consider:

P(Xi(x)=1) > 1/2.

m Possible semantics:
m Coupled parameters: for each v € [1/2,1],

Vx € D: P(X1(x)) = .

m Decoupled parameters: for each x € D,

P(Xi(x)) =~ for each v € [1/2,1].



Relational credal networks: Results

m Explicit domain is given; inference is INF4(C) with respect to
grounded network where relations have bounded arity.

m Data complexity DINF4: inference when model is fixed, and
evidence and domain are inputs.



Relational credal networks: Results

m Explicit domain is given; inference is INF4(C) with respect to
grounded network where relations have bounded arity.

m Data complexity DINF4: inference when model is fixed, and
evidence and domain are inputs.

m Theorem: INF};(FFFO) is NPPP-complete both for coupled
and decoupled parameters.

m Theorem: DINF4(FFFO) is NPPP-complete for decoupled
parameters.

m Theorem: DINF,(FFFO) is PP-complete for coupled
parameters.



Conclusion

Specification language and complexity are inter-related.
Even for propositional networks, non trivial scenarios.

For relational networks, several open questions that go beyond
Bayesian networks.



