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Goal

to study the relationship between

specification language and

complexity in Boolean credal networks.



Credal networks

Directed acyclic graph, where each node is a random variable
with associated “local” credal sets, with associated Markov
condition.

X1 X2 X3

X4 X5

We focus on the strong extension:{
P : P(X = x) =

n∏
i=1

P(Xi = xi |pa(Xi ) = πi )

}
.



Complexity

Marginal inference: P(XQ = xQ |XE = xE ) > γ?

INFd(C): the inference problem for a class C of networks;
INF+

d (C) when evidence is positive (that is, {X = true} is
observed).

In Bayesian networks: PP-complete problem.
In strong extensions: NPPP-complete problem.
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Specification framework: Propositional

Associate, with each (Boolean) variable X , either

Equivalence X ⇔ F (Y1, . . . ,Ym), where F is a sentence.
Assessment P(X = true) ∈ [α, β].

X1

X2 X3

X4 X5

P(X1 = 1) ≥ 1/2

P(X2 = 1) ∈ [1/4, 1/3] P(X3 = 1) = 1/5

X4 ⇔ X1 ∧ X2 X5 ⇔ X3 ∧ X4

Every propositional credal network can be specified this way.
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Propositional credal networks: Results

Theorem: INF+
d (Prop(∧, (¬))) is polynomial.

Theorem: INF+
d (Prop(∧,∨, (¬))) is NPPP-complete.



Relational credal networks

Extend: parameterized variables, with logical variables over
(finite) domains.
Example:

P(X1(x) = 1) ≥ 1/2,

P(X2(x) = 1) ∈ [1/4, 1/3],

P(X3(x , y) = 1) = 1/5,

X4(x) ⇔ X1(x) ∧ X2(x),

X5(x) ⇔ ∀y : X3(x , y) ∧ X4(y).

with domain D = {a, b}:

X1(a)

X2(a)

X3(a, a) X3(a, b)

X4(a) X5(a)

X1(b) X2(b)

X3(b, a) X3(b, b)

X4(b) X5(b)
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Relational credal networks: Semantics

Consider:

P(X1(x) = 1) ≥ 1/2.

Possible semantics:

Coupled parameters: for each γ ∈ [1/2, 1],

∀x ∈ D : P(X1(x)) = γ.

Decoupled parameters: for each x ∈ D,

P(X1(x)) = γ for each γ ∈ [1/2, 1].
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Relational credal networks: Results

Explicit domain is given; inference is INFd(C) with respect to
grounded network where relations have bounded arity.

Data complexity DINFd : inference when model is fixed, and
evidence and domain are inputs.

Theorem: INF+
d (FFFO) is NPPP-complete both for coupled

and decoupled parameters.

Theorem: DINFd(FFFO) is NPPP-complete for decoupled
parameters.

Theorem: DINFd(FFFO) is PP-complete for coupled
parameters.
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Conclusion

1 Specification language and complexity are inter-related.

2 Even for propositional networks, non trivial scenarios.

3 For relational networks, several open questions that go beyond
Bayesian networks.


