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Motivating Example

@ random components, say power generators with capacity X;




Motivating Example

n
risk = Pr(z Xi < x]
i=1

Total generation

demand
bad
good

16%

in common cases:
@ threshold well x known
(not always!)
o distribution of 2.7 ; X; is
very sensitive to
modelling assumptions
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Motivating Example

Modelling Assumptions On Y7, X;?
@ marginal distributions of each X; = easy to get right
@ interactions between the different X; = easy to get wrong

positive correlation independent negative correlation

Total generation Total generation Total generation

0%

0 0

= typical reality = typical assumption = unusual
why? why?

common cause computational

events convenience



The Instant Repair Model

Continuous Time Markov Chain
model parameters:
@ go: common-cause failure rate
° qf‘ & g7 ‘single-cause’ failure rate per
component
Markov assumption:

@ failure rates unaffected by history

Parameterisation: Alpha-Factor Model
‘directly observable’ parameters:

= L(qt/\ +9B) (1) e az = fraction of faults
| “)\ + 202 due to common cause a1 =1-a»
g =G —Q (2)

Lo o g & P = failure rates
ar =0q — % (3) of components seen separately




The Data

Expert Knowledge

@ ap: directly from nationwide statistics
@ g & gP: from nationwide statistics about constituents e.g. from

average failure rate per km of overhead line
average failure rate per km of underground cable
any other components ...

regional dependencies?
how applicable is nationwide data to a specific network?

Direct Failure Data about the Actual Network Under Study
typically, very sparse, but more informative

we propose imprecise probability to cope with lack of relevant data
and uncertainty about applicability of expert opinion




The Analysis: Why Imprecise Probability?

@ nationwide statistics inform the mean of the prior
@ we consider a set of variances for the prior
@ this is an elegant way to handle prior-data conflict [13]

variance of prior = judgement about how fast you are willing
to learn from data



Incorporating Repair: Why?
What do network operators care about?
@ How frequently do outages occur?

Approximately answered by previous analysis even though instant
repair assumption is not realistic.

@ How long do outages last for?
Need explicit repair model! How? Billinton & Allan [1]:

q;

OO

@ Markov assumption
violated in reality.
B
s 2 9y +Q2 o Little data
to estimate parameters.

o-@ We can use imprecision

to address both issues.
q1A + Q2



Incorporating Repair: Issues With The Standard Model

Model assumptions blatantly violated in even the simplest systems!

@ violation of stationarity
Failure rates are usually not constant in time: bathtub curve.

Burn Useful Wear out
o |IN Life
T
o
o
=]
kS
Time

@ epistemic uncertainty
There can be substantial uncertainty about the rates themselves,

particularly for common cause events.



Incorporating Repair: Issues With The Standard Model

@ violation of Markov condition
Repair rates depend on system history, and repair times are not
exponentially distributed as predicted by the model.

Model Reality
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@ missing covariates
Repair rates depend on operation of the entire power system.
For instance: severe wheather, many simultaneous failures, but
number of repair crews is limited.

... S0, why use this model?



Incorporating Repair: Why Use The Standard Model?

Computation!
E(f(X;) | Xo = i) = [e'91];

@ e!@ = matrix exponential

@ many efficient methods for calculating it
(although numerical stability sometimes an issue)

Other examples:

Q=0 long term distribution 7
T expected time spent in state i
— 1 Qji expected number of transitions to state i

SECRG!



Imprecise Continuous Time Markov Chains

Concerns
@ Can we efficiently compute inferential bounds?

Yes, subject to a technical condition
(but can always do so conservatively).
@ Can this very large class of statistical processes
still produce useful bounds on inferences?

Apparently, yes!

Theorem (Skulj, 2012)
Under fairly relaxed technical conditions:

B(f(X) | Xo = 1) = lim [(I—i—(t/n)Q)" f] (8)

I

where [Qf]; := minge[Qf];




Conclusion

@ Sparse data and prior-data conflict? Bayes + sensitivity analysis.
@ Relaxing Markov assumption and stationarity via bounding?
It is easy and inferences still sufficiently precise.
@ Novel mathematics like imprecise Markov chains enable
a much wider class of statistical processes
reducing model discrepancies and improving risk analysis.
@ Imprecision not only useful for epistemic uncertainty,
also useful to study very complex models in an efficient way.
Future work:
@ How to get model parameter bounds from data in general?
@ Improved algorithms for “imprecise matrix exponential”.
@ Additional covariates: failure rates depend on system context.
°

Decision making for power network design:
tradeoff between cost of redundancy and common-cause risks.

Potential for applications to other practical problems.

Thank you for listening & visit the poster!
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