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1Durham University, United Kingdom
2Ljubjana University, Slovenia

3Newcastle University, United Kingdom

23 July, 2015
work funded by BP and EPSRC (grant no EP/J501323/1)

2



Motivating Example

random components, say power generators with capacity Xi

deterministic known risk threshold, say power demand x
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Motivating Example

risk = Pr

 n∑
i=1

Xi ≤ x



in common cases:

threshold well x known
(not always!)

distribution of
∑n

i=1 Xi is
very sensitive to
modelling assumptions
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Motivating Example
Modelling Assumptions On

∑n
i=1 Xi?

marginal distributions of each Xi = easy to get right

interactions between the different Xi = easy to get wrong

positive correlation

= typical reality
why?

common cause
events

independent

= typical assumption
why?

computational
convenience

negative correlation

= unusual
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The Instant Repair Model
Continuous Time Markov Chain

AB B

A ∅
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1 q2

∞
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model parameters:

q2: common-cause failure rate

qA
1 & qB

1 : ‘single-cause’ failure rate per
component

Markov assumption:

failure rates unaffected by history

Parameterisation: Alpha-Factor Model

q2 =
α2

α1 + 2α2
(qA

t + qB
t ) (1)

qA
1 = qA

t − q2 (2)

qB
1 = qB

t − q2 (3)

‘directly observable’ parameters:

α2 = fraction of faults
due to common cause α1 = 1 − α2

qA
t & qB

t = failure rates
of components seen separately
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The Data

Expert Knowledge
α2: directly from nationwide statistics
qA

t & qB
t : from nationwide statistics about constituents e.g. from

I average failure rate per km of overhead line
I average failure rate per km of underground cable
I any other components . . .

regional dependencies?
how applicable is nationwide data to a specific network?

Direct Failure Data about the Actual Network Under Study
typically, very sparse, but more informative

we propose imprecise probability to cope with lack of relevant data
and uncertainty about applicability of expert opinion
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The Analysis: Why Imprecise Probability?
nationwide statistics inform the mean of the prior
we consider a set of variances for the prior
this is an elegant way to handle prior-data conflict [13]

variance of prior = judgement about how fast you are willing
to learn from data
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Incorporating Repair: Why?
What do network operators care about?

How frequently do outages occur?
Approximately answered by previous analysis even though instant
repair assumption is not realistic.

How long do outages last for?
Need explicit repair model! How? Billinton & Allan [1]:

AB B

A ∅

qA
1

qB
1 q

2

rA

rB qB
1 + q2

qA
1 + q2

rA

rB

Issues
Markov assumption
violated in reality.

Little data
to estimate parameters.

We can use imprecision
to address both issues.

9



Incorporating Repair: Issues With The Standard Model

Model assumptions blatantly violated in even the simplest systems!

violation of stationarity
Failure rates are usually not constant in time: bathtub curve.

epistemic uncertainty
There can be substantial uncertainty about the rates themselves,
particularly for common cause events.
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Incorporating Repair: Issues With The Standard Model

violation of Markov condition
Repair rates depend on system history, and repair times are not
exponentially distributed as predicted by the model.

missing covariates
Repair rates depend on operation of the entire power system.
For instance: severe wheather, many simultaneous failures, but
number of repair crews is limited.

. . . so, why use this model?
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Incorporating Repair: Why Use The Standard Model?

Computation!
E(f(Xt) | X0 = i) = [etQ f ]i (4)

etQ = matrix exponential

many efficient methods for calculating it
(although numerical stability sometimes an issue)

Other examples:

πQ = 0 long term distribution π (5)

τπi expected time spent in state i (6)

− τπiQii expected number of transitions to state i (7)
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Imprecise Continuous Time Markov Chains

Concerns
Can we efficiently compute inferential bounds?

Yes, subject to a technical condition
(but can always do so conservatively).

Can this very large class of statistical processes
still produce useful bounds on inferences?

Apparently, yes!

Theorem (Škulj, 2012)
Under fairly relaxed technical conditions:

E(f(Xt) | X0 = i) = lim
n→∞

[(
I + (t/n)Q

)n
f
]
i

(8)

where [Qf ]i B minQ∈Q[Qf ]i
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Conclusion
Sparse data and prior-data conflict? Bayes + sensitivity analysis.
Relaxing Markov assumption and stationarity via bounding?
It is easy and inferences still sufficiently precise.
Novel mathematics like imprecise Markov chains enable
a much wider class of statistical processes
reducing model discrepancies and improving risk analysis.
Imprecision not only useful for epistemic uncertainty,
also useful to study very complex models in an efficient way.

Future work:

How to get model parameter bounds from data in general?

Improved algorithms for “imprecise matrix exponential”.

Additional covariates: failure rates depend on system context.

Decision making for power network design:
tradeoff between cost of redundancy and common-cause risks.

Potential for applications to other practical problems.

Thank you for listening & visit the poster! 14
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