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A binary classi�cation problem by precise data

Given:

a training set (xi , yi ), i = 1, ..., n, (examples, patterns, etc.)
x 2 X is a multivariate input of m features, X is a compact
subset of Rm

y 2 f�1, 1g is a scalar output (labels of classes)
The learning problem:

to select a function f (x,wopt) from a set of functions f (x,w)
parameterized by a set of parameters w 2 Λ, which separates
examples of di¤erent classes y .
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The expected risk for solving the standard classi�cation
problem

Minimize the risk functional or expected risk:

R(w,b) =
Z

Rm
l(w, φ(x))dF (x),

the loss function:

l(w, φ(x)) = max f0, b� hw, φ(x)ig .

The empirical expected risk with the smoothing (Tichonov�s) term

Remp(w,b) =
1
n

n

∑
i=1
l(w, φ(xi )) + C � kwk2 .
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Support vector machine (SVM): a dual form form

The Lagrangian:

max
α

 
n

∑
i=1

αi �
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK (xi , xj )

!
,

subject to

n

∑
i=1

αiyi = 0, 0 � αi � C , i = 1, ..., n.

The separating function f in terms of Lagrange multipliers:

f (x) =
n

∑
i=1

αiyiK (xi , x) + b.
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A binary classi�cation problem by interval-valued data

Training set: (Ai , yi ), i = 1, ..., n. Ai � Rm is the Cartesian

product of m intervals [a(k )i , a(k )i ], k = 1, ...,m.
Reasons of interval-valued data:

Imperfection of measurement tools

Imprecision of expert information

Missing data
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Approaches to interval-valued data in classi�cation and
regression (1)

Interval-valued data are replaced by precise values based on
some assumptions, for example, by taking middle points of
intervals (LimaNeto and Carvalho 2008): a very popular
approach, unjusti�ed, especially, by large intervals

The standard interval analysis (Angulo 2008, Hao 2009): only
linear separating or regression functions

Bernstein bounding schemes (Bhadra et al. 2009):
incorporate probability distributions over intervals.
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Approaches to interval-valued data in classi�cation and
regression (2)

The Euclidean distance between two data points in the
Gaussian kernel is replaced by the Hausdor¤ distance and
other distances between two hyper-rectangles (Do and Poulet
2005, Chavent 2006, Souza and Carvalho 2004, Pedrycz et al
2008, Schollmeyer and Augustin 2013): a nice and simple
idea, but with some questions.

Minimizing and maximizing the risk measure over values of
intervals (Utkin and Coolen 2011, Cattaneo and Wienzierz
2015): only monotone separating functions (Utkin and Coolen
2011) or only interval-valued response variables y in
regression models (Cattaneo and Wienzierz 2015).

Lev V. Utkin, Anatoly I. Chekh, Yulia A. Zhuk Classi�cation SVM algorithms with interval-valued training data using triangular and Epanechnikov kernels



Statement of the binary classi�cation problem
Interval-valued training data

An algorithm with L_2-norm SVM
An algorithm with L_in�nite-norm SVM

Classi�cation problems by interval-valued data
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Ideas underlying two new algorithms

1 Interval observations produce a set of expected risk measures
such that the lower and upper risk measures are determined
by minimizing and by maximizing the risk measure over values
of intervals (this is an old idea used in Utkin and Coolen 2011,
Cattaneo and Wienzierz 2015).

2 By applying the lower risk (the minimax strategy), it would
be nice to isolate a �linear�programm from the SVM with
variables xi 2 Ai and then to work with extreme points x�i .

3 Important idea: We replace the Gaussian kernel by the
triangular kernel which can be regarded as an approximation
of the Gaussian kernel (Utkin and Chekh 2015). This
replacement allows us to get a set of linear programms with
variables xi restricted by Ai , i = 1, ..., n.
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Interval-valued training data, belief functions and minimax
strategy

Lower R and upper R expectations of the loss function l(x) in the
framework of belief functions (Nguyen-Walker 1994, Strat 1990):

R =
n

∑
i=1
m(Ai ) inf

xi2Ai
l(xi ) =

1
n

n

∑
i=1

inf
xi2Ai

l(xi ),

R =
n

∑
i=1
m(Ai ) sup

xi2Ai
l(xi ) =

1
n

n

∑
i=1

sup
xi2Ai

l(xi ).

The minimax strategy (Γ-minimax): we do not know a precise
value of the loss function l , but we take the �worst�value providing
the largest value of the expected risk (Berger 1994, Gilboa and
Schmeidler 1989, Robert 1994): R(wopt,bopt) = minw,ρ R(w,b).
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Support vector machine (SVM): a dual form form

The Lagrangian:

max
xi2Ai

max
α

 
n

∑
i=1

αi �
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK (xi , xj )

!
,

subject to

n

∑
i=1

αiyi = 0, 0 � αi � C , i = 1, ..., n.

The separating function f in terms of Lagrange multipliers:

f (x) =
n

∑
i=1

αiyiK (xi , x) + b.
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The �rst algorithm

An obvious way is to �x α and to replace the Gaussian kernel

K (x, y) = exp

 
�kx� yk

2

σ2

!

+

T (x, y) = max

(
0, 1� kx� yk

1

σ2

)
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Triangular kernel

We approximate the Gaussian kernel by the triangular kernel in
order to get a "piecewise" linear programm!
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A set of standard quadratic problems

By �xed Lagrangian multipliers α and the triangular kernel, we
get a linear problem with constraints xi 2 Ai .
Its optimal solution is achieved at extreme points or vertices of
the hyperrectangles produced by Ai , i.e., at interval bounds.
For every extreme point, we solve the standard quadratic
problem.

The main problem of the algorithm:
If we have n interval-valued data consisting of m features, then the
number of extreme points (quadratic programms) is t = 2nm .
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What to do when we have many intervals?

Idea: There are many variants of SVMs.

It would be nice to �nd a SVM for which constraints for
classi�cation parameters do not depend on interval
observations xi .
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L_in�nite-norm SVM

An interesting L∞-norm SVM proposed by Zhou et al. 2002:

minR = min

 
�r + C

n

∑
i=1

ξi

!
,

subject to

yj

 
n

∑
i=1

αiyiK (xi , xj ) + b

!
� r � ξj , j = 1, ..., n,

�1 � αi � 1, i = 1, ..., n, r � 0, ξj � 0, j = 1, ..., n.
αj , ξj , j = 1, ..., n, r , b are optimization variables
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The dual form is more interesting

The dual form by �xed x1, ..., xn:

min
z

n

∑
i=1
yi

 
n

∑
j=1
zjyjK (xi , xj )

!
,

subject to ∑n
i=1 zi � 1, 0 � zj � C , j = 1, ..., n, ∑n

i=1 ziyi = 0.

All x1, ..., xn are in the objective function

Constraints have only variables z1, ..., zn which produce the
convex set Z of an interesting form.
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The convex sets of solutions

∑n
i=1zi � 1, 0 � zj � C , j = 1, ..., n, ∑n

i=1ziyi = 0.

z1 ! y1 = �1, z2 ! y2 = 1, z3 ! y3 = 1
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The convex sets of solutions

Proposition

Let n�and n+be numbers of y = �1and y = 1. tand s :

(2C )�1 < t � min(n�, n+),
(2C )�1 � 1 � s < min

�
(2C )�1, n�, n+

�
,

The �rst subset: N1 = ∑min(n�,n+)
t=d1/2C e (

n�
t )(

n+
t )extreme points: telements

from every class are C , others are 0.
If s � 0, then the second subset: N2 = (n� � s)(n+ � s)(n�s )(

n+
s )

extreme points: selements from every class are C , one element from
every class is 1/2� sC , others are 0.
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The �nal optimization problems

By using again the triangular kernel, we get a set of N1+N2
(the number of extreme points of Z) linear programms with
variables xi 2 Ai , i = 1, ..., n.

The number of linear programms does not depend on the
number m of features!
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The Epanechnikov kernel

Another kernel:

T2(x, y) = maxf0, 1� kx� yk2 /σ2g.
We get a quadratically constrained linear program (QCLP).
Tools: the sequential quadratic programming (Boggs and Tolle
1995), SNOP (Gill et al. 2002)
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Advantages of the algorithms

1 The algorithms allows us to construct non-linear separating
functions.

2 The algorithms are justi�ed from the decision point of view
(minimax strategy).

3 The algorithms produce unique and consistent precise points
of intervals corresponding to the largest value of the expected
classi�cation risk. The points compose a single probability
distribution among a set of distributions produced by intervals
in the framework of Dempster-Shafer theory.

4 The algorithms can be extended on the support vector
regression algorithms when dependent as well as independent
variables are interval-valued.
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Questions

?
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