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Single- vs. multi-label classification

A (fictious) classifier to detect eyes color
Possible classes C := {brown,green,blue}
Heterochromia iridum: two (or more) colors
Possible values in 2¢, a multilabel task!
Trivial approaches

e Standard classification over the power set
Exponential in the number of labels!

o Each label as a separate Boolean variable
a (standard) classifier for each label

Ignored relations among classes !

Graphical models (GMs) to depict relations

among class labels (and features)

Classification as (standard) inference in GMs

SINGLE-LABEL

C = green

MULTI-LABEL

C = {blue,brown}



Credal classifiers are not (yet) multilabel classifiers

o Class variable C and (discrete) features F, a test instance f

e Standard (single-label) classifier are maps: F — C

learn P(C, F) from data and return c¢* := arg maxcec P(c, f)

e Multi-label classifiers: F — 2€
C = (G, ..., Gy) as an array of Boolean vars, one for each label
learn P(C, F) and solve the MAP task c¢* := arg maxccqo,13» P(c, f)

o Credal (single-label) classifiers: F — 2€
learn credal set K(C, F) and return all ¢’ € C s.t.
B’ P(c',F) > P(c",f) VP(C,F)e K(C,F)
e Multilabel credal classifier (MCC): F — 22°

learn credal set K(C, F) and return all sequences ¢” s.t.
Ac' - P(c',f) > P(c",f) VP(C,F)e K(C,F)
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Compact Representation of the Output

Output of a MCC might be exponentially large
Jasper & Gert's idea to fix this with imprecise HMMs (Viterbi):
decide whether or not there is at least an optimal sequence sucht
that a variable is in a particular state (for each variable and state)
With MCCs, for each class label, we can decide whether:

o the class is active for all the optimal sequences

o the class is inactive fro all the optimal sequences

o there are optimal sequences with the label active,
and others with the label inactive

Optimization task

. ) P(c’,f)
min  max inf — <1
¢:c/’=0/1 ¢ P(C,F)eK(C,F) P(c”,F)
O(2treewidth) for separately specified credal nets (e.g., local IDM)

More complex with non-separate specifications



NBC



NCC=NBC+IDM



Structural learning to bound # of parents of the features

and to select the super-class ¢;



Features replicated: tree topology

MNBC



Features replicated: tree topology
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During the poster session | can

Explain some detail about the learning of the structure
Explain the feature replication trick (tis makes inference simpler)
Explain the non-separate IDM-based quantification of the model

Explain the detail of the (convex) optimization



MNCC: the algorithm

Input: test instance f (4 dataset D) / Output initialized:

G| G)|...| G
active 0 0O |...| 0
inactive | 0 O|...] 0

for /=1,...,ndo
for ¢, =0,1 do
if MiNg/r:¢//=¢, MaXes infy % <1 then
Output(/,¢)=1
end if
end for
end for

linear representation of a (exponential) number of maximal seqs

1]1{1]0
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Testing MNCC

@ Preliminary tests on real-world datasets

Data set Classes Features Instances
Emotions 6 44/72 593
Scene 6 224/294 2407
E-mobility 10 14/18 4226
Slashdot 22 496/1079 3782

@ Perfomance described by:
e % of instance s.t. all maximal seqs all in the same state
o Accuracy of the precise model when MNCC is determinate

o Accuracy of the precise model when MNCC is indeterminate
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Conclusions, Outlooks and Acks

@ Among the first tools for robust multilabel classification

Still lots of things to do:
o Extension to multidimensional/hierarchical case
@ Extension to continuous variables (features)

e Extension to continuous class (multi-target interval-valued

regression)

More complex topologies (ETAN, de Campos, 2014)

@ Variational approach to features replication

Not only 0/1 losses (imprecise losses?)



