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Motivation

Multivariate distributions take into account the dependence
between the variables.

Possible dependence between the variables: independence,
comonotonicity, countermonotonicity, . . .

What happens when we have imprecise information?

Independence for imprecise probabilities has already been
studied.

And what about comonotonicity?
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Comonotone random variables

Let (X,Y ) be a random vector defined on X × Y, and denote
by PX,Y its probability distribution. PX,Y is called comonotone
when the following equivalent conditions hold:

For any (x, y) ∈ X × Y, either P (X ≤ x, Y > y) = 0 or
P (X > x, Y ≤ y) = 0.

The support of PX,Y is an increasing subset of R2.

FX,Y(x, y) = min(FX(x), FY(y)) for any (x, y).

ω1 ω2 ω3 ω4

X 2 2 3 1
Y 1 2 2 1

1

2

1 2 3
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Comonotone lower probabilities
Assume that P : P(X × Y)→ [0, 1] is a lower probability mod-
elling the imprecise knowledge about PX,Y. We say that P is
comonotone when any P ∈M(P ) is comonotone.

Example: Consider X = {x1, x2} and Y = {y1, y2} (x1 <
x2 and y1 < y2). If P ({(x1, y2)}) = 0, any P ∈ M(P ) is
comonotone:

x1 x2

y1

y2
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Characterizations

Comonotone lower probabilities

supp(P ) is an increasing set

∀(x, y), either

P ({(u, v) : u > x, v ≤ y}) = 0 or

P ({(u, v) : u ≤ x, v > y}) = 0.

F (x, y) = min(FX(x), FY(y))

F (x, y) = min(FX(x), FY(y)).

Any P ∈M(P )
is comonotone.
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Building comonotone lower probabilities

Theorem
Let BelX and BelY be two belief function with nested focal el-
ements. Then, it is always possible to build a joint coherent
comonotone lower probability with these fixed marginals, and in
fact, it is also a belief function with nested focal elements.

Theorem
Let BelX and BelY be two belief functions with focal sets A1, . . . , An

and B1, . . . , Bn such that Ai = [ai, ai] and Bi = [bi, bi] are in-
tervals for i = 1, . . . , n and mX(Ai) = mY(Bi). Then, there
exists a joint coherent comonotone lower probability with these
fixed marginals. Furthermore, it is a belief function.
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Example

y1

y2

y3

x1 x2 x3

mX({x2}) = 0.6, mX({x1, x2, x3}) = 0.4.
mY({y1, y2}) = 0.2, mY({y1, y2, y3}) = 0.8.

mX({x2}) = 0.2, mX({x2}) = 0.4, mX({x1, x2, x3}) = 0.4.
mY({y1, y2}) = 0.2, mY({y1, y2, y3}) = 0.4, mY({y1, y2, y3}) = 0.4.
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Non-uniqueness

The joint comonotone belief function may not be unique!!
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Highlights

This work investigates the notion of comonotonicity for lower
probabilities.

Definition, characterizations and properties.

Not all marginals allow to define a joint comonotone coher-
ent lower probability.

It does for particular cases of belief functions.

Comonotonicity for bivariate p-boxes: too much restrictive.

All our results can be extended to countermonotonicity.
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