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Introduction « Multivariate distributions take into account the dependence
between the variables.

« Possible dependence between the variables: independence,
comonotonicity, countermonotonicity, ...

« What happens when we have imprecise information?

« Independence for imprecise probabilities has already been
studied.

« And what about comonotonicity?
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Comonotone random variables
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Let (X,Y) be a random vector defined on X x ), and denote

by Px,y its probability distribution. Px y is called comonotone

Comonotonicity When the following equivalent conditions hold:

probabitties « For any (z,y) € X x Y, either P(X < z,Y > y) =0 or
P(X >z,Y <y)=0.

« The support of Px y is an increasing subset of R2.

* Fxy(z,y) = min(Fx(z), Fy(y)) for any (z,y).
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Comonotone lower probabilities
Assume that P : P(X x V) — [0,1] is a lower probability mod-
"E elling the imprecise knowledge about Pxy. We say that P is
comonotone when any P € M(P) is comonotone.
Comonotonicity
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Comonotone lower probabilities

Assume that P : P(X x V) — [0,1] is a lower probability mod-
elling the imprecise knowledge about Pxy. We say that P is
comonotone when any P € M(P) is comonotone.
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for lower
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Example: Consider X = {z1,22} and Y = {y1,92} (21 <
zo and y1 < y2). If P({(z1,92)}) = 0, any P € M(DP) is

comonotone:
Y2 ©)
Y1 O} O
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Characterizations

Comonotone lower probabilities
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Comonotonicity — V(.’Z, y)7 L
for lower ‘supp(E) is an increasing set‘ P({(w,v) :u>=z,v<y})=0o0r
probabilities P{(u,v) :u<z,v>y})=0.
Any P € M(P)
is comonotone.

|

E(e,y) = min(Fx(z), Fy (1)
F(z,y) = min(Fx (2), Fy ().
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Building comonotone lower probabilities

Theorem

Let Belx and Bely be two belief function with nested focal el-
ements. Then, it is always possible to build a joint coherent
comonotone lower probability with these fixed marginals, and in
fact, it is also a belief function with nested focal elements.

Theorem

Let Belx and Bely be two belief functions with focal sets A, ..., A,
and By, ..., B, such that A; = [a;,a;] and B; = [b;,b;] are in-
tervals for i = 1,...,n and mx(A;) = my(B;). Then, there
exists a joint coherent comonotone lower probability with these
fixed marginals. Furthermore, it is a belief function.
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mx ({z2}) = 0.6, mx ({z1, 22, 23}) = 0.4.

my({y1,92}) = 0.2, my({y1,y2,y3}) =0.8.
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The joint comonotone belief function may not be unique!!
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Highlights
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This work investigates the notion of comonotonicity for lower
probabilities.

« Definition, characterizations and properties.

Not all marginals allow to define a joint comonotone coher-
ent lower probability.

+

Conclusions

4

It does for particular cases of belief functions.

*

Comonotonicity for bivariate p-boxes: too much restrictive.

Al

All our results can be extended to countermonotonicity.
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