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william james

The history of philosophy is to a great extent that of a certain
clash of human temperaments.

… [Temperament] loads the
evidence … one way or the other, making for a more sentimental
or a more hard-hearted view of the universe, just as this fact or
that principle would (James 1907, 8–9).
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reduction of numbers to sets

Zermelo-Fraenkel
0 = {}
1 = {0} = {{}}
2 = {1} = {{{}}}
3 = {2} = {{{{}}}}

Von Neumann
0 = {}
1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}}
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interpretations of probability

Subjective Interpretation

Ramsey (1926), de Finetti (1937), Savage (1954), Anscombe-Aumann (1963)
Jeffreys (1939), Fisher (1936)

Logical Interpretation

Carnap (1945, 1952), Paris & Vencovská (2015), Kyburg (1961, 2001)

Frequency / Propensity Interpretation

Reichenbach1 and Popper (1959)

1See (Glymour and Eberhardt 2012).
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interpretating probability

What is probability?

Any response should answer at least three questions (Salmon 1967):

1. Why should probability have particular mathematical properties?

2. How do are probabilities determined or measured?

3. Why and when is probability useful?
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logical probability

3. Why is logical probability useful?

Measures the strength of evidential support.

2. How are logical probabilities measured?

Carnap Kyburg
? From statistical data

1. Why does logical probability satisfy the axioms?

Carnap Kyburg
Analytic ?
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subjective probability

3. Why is subjective probability useful?

Measures the strength of partial belief.

Allows us to calculate expected utility calculations.

2. How is subjective probability measured?

Betting behavior

Accurate forecasting

Preferences among compound lotteries

Preferences among acts
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subjective probability

1. Why does subjective probability satisfy the axioms?

Measurement Procedure Rationality Criteria
Betting behavior Avoiding sure loss
Accurate forecasting Minimizing squared-error loss
Qualitative verbal comparisons Qualitative probability axioms
Preferences among lotteries VNM & Anscombe-Aumann axioms
Preference among acts Savage axioms

Theorem: If probability is elicited via the measurement procedure,
then for the corresponding rationality criteria:

Rationality criteria ⇔ Satisfy Probability Axioms.
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epistemic decision theory

· Traditional dF-style use of (strictly) proper scoring rules:
Measurement Procedure Rationality Criteria
Accurate forecasting Minimizing squared-error loss

· Purely epistemic interpretation of (strictly) proper scoring rules:2

Alethic Property Rationality Criteria
Gradational (in)accuracy ‘Distance’ from the truth

2See (Joyce 1998; Joyce 2009; Leitgeb and Pettigrew 2010; Pettigrew 2013).
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back to james

Two philosophical temperaments:

Tender-minded: cling to the belief that facts should be related to
values and that values seen as predominant.

Tough-minded: want facts to be dissociated from values and left to
themselves.
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ip and scoring rules

Joyce’s Commitments (1998, 2009)

· Credal commitments (belief) modeled by IP &

· Purely epistemic interpretation of (strictly) proper scoring rules:

10



impossibility theorem

Theorem (Seidenfeld et al. (2012)3)

Admissibility, Imprecision, Continuity, Quantifiability, Extensionality,
and Strict Immodesty are jointly inconsistent.

3A mild mathematical generalization is in Mayo-Wilson and Wheeler, forthcoming.
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scoring rule

For the purposes of this talk,

a scoring rule I(b, ω) denotes the ‘ inaccuracy’ of the belief b about a
proposition φ when the truth-value of φ is ω ∈ {0, 1}.
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plan

Claim: there is no strictly proper IP scoring rule.

Plan: give 6 necessary postulates that cannot all be satisfied.
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postulates

Admissibility Let b, c, and d be three (not necessarily distinct) belief
states, and suppose that d is at least as accurate as c
whatever the truth.

If your belief state is b and the set of rational belief
states Rb from your perspective contains c, then it also
contains d.

14



Imprecision: A belief state is a set of real numbers between 0 and 1.

Quantifiability: Degrees of inaccuracy are represented by
non-negative real numbers.

Extensionality: For every truth-value ω and every belief state b,
there is a single degree of inaccuracy I(b, ω)
representing how inaccurate belief b is.

Moreover, this degree depends only upon b and the
truth-value ω of the proposition φ of interest.

Strict Immodesty: If your belief state is b, then the set of rational
belief states Rb from your perspective is {b}.
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pareto constraint

Problem: It is unclear how to represent the distance between
arbitrary sets of numbers between 0 and 1.

How “close” are the beliefs that

(i) a flipped coin lands heads in the interval [ 14 ,
3
4 ], and

(ii) a flipped coin lands heads in the interval [ 14 ,
3
4 ] other

than 4
7 ?
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pareto constraint

Suppose that belief states a, b, c are such that

a− ≤ b− ≤ c− or a− ≥ b− ≥ c−, and
a+ ≤ b+ ≤ c+ or a+ ≥ b+ ≥ c+.

Constraint P The distance between the belief states a and c ought
to be at least as great as the distance between the
belief states a and b.

Example:

0 1a− a+
b− b+

c− c+
a

b
c
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Continuity Sufficiently similar belief states are similarly
inaccurate. More precisely, for all ω, the function
I(b, ω) restricted to the set of interval beliefs b is
continuous with respect to the parameter b, where the
metric on beliefs satisfies Constraint P.
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impossibility theorem

Theorem (Seidenfeld et al. (2012)4)

Admissibility, Imprecision, Continuity, Quantifiability, Extensionality,
and Strict Immodesty are jointly inconsistent.

4A mild mathematical generalization is in Mayo-Wilson and Wheeler, forthcoming.
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impossibility theorem: scope

One to many propositions: Although formulated for a single
proposition, our result extends to finitely many
propositions with additional mathematical machinery
to ensure the topological invariance of dimension.5

Other Uncertainty Models: The theorem applies to Dempster-Shafer
Belief functions and Ranking functions.

5Thanks here to Catrin Campbell-Moore.
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the options

· Admissibility
· Extensionality

Central to accuracy-first epistemology

· Imprecision

Central to IP

· Continuity
· Quantifiability
· Strict Immodesty

Remaining options
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the options

Drop Continuity: Perhaps discontinuities for extreme belief states
are okay, such as assigning probability zero to a true
proposition.

Our proof shows the stronger result that a measure of inaccuracy
must be discontinuous almost everywhere if it is to satisfy the other
5 axioms.

So, continuity stays.
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quantifiability

Drop Quantifiability: Perhaps the extended reals would work, such
as giving the score∞ to the vacuous belief state [0, 1].

Our proof holds for the extended reals, too; one cannot weaken
Quantifiability by a small trick.
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no quantifiability camp

SSK Lexicographic probabilities
Joyce Inaccuracy can be measured by a single real number

only when degrees of belief are; Sturgeon calls this
principle Character Matching6

6See (Wheeler 2014) for a reply.
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a character matching argument

Character Matching: If your degrees of belief are indeterminate,
then the distance between your degrees of belief and
the truth is likewise indeterminate.

So, perhaps inaccuracy should be represented by a set of real
numbers rather than a single one.
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a character matching argument

Example:

Suppose p is a precise credence and I(p, ω) its inaccuracy if ω = 1

Suppose p is replaced by [ 13 ,
2
3 ].

A natural idea is then for inaccuracy to be {I(q, ω) : q ∈ [ 13 ,
2
3 ]}.
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a character matching argument

But if this argument for Imprecision is convincing, then one should
abandon the idea that inaccuracy is numerically quantifiable at all.

Why?

Just as an indeterminate credal state may admit an indeterminate
degree of inaccuracy with respect to a single proposition, so too can
a precise credal state admit indeterminate degrees of inaccuracy
with respect to multiple propositions.
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epistemic accuracy and quantifiability

· Admissibility
· Extensionality
· Quantifiability

Quantifiability and Pure Epistemic Loss, including “accuracy,” are
incompatible.
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the options

· Admissibility
· Extensionality

Central to accuracy-first epistemology

· Imprecision

Central to IP

· Continuity
· Quantifiability
· Strict Immodesty

29



mildly proper ip scoring rules



plan

Claim: there are strictly mildly proper IP scoring rules.

Plan: give new postulates to replace Strict Immodesty.
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5∗th postulate

Strict Immodesty If an agent’s belief state is b, then the set of
rational belief states Rb from her perspective is equal
to the singleton {b}.

Mild Immodesty If an agent’s belief state is b, then the set of
rational belief states Rb from her perspective includes
b.
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mild immodesty

Problem: There are lots of mildly immodest scoring rules.

Here is one:

Lucky 7: Score every belief by your lucky number, I(b, ω) = 7.

Lucky 7 satisfies Imprecision, Continuity, Quantifiability,
Extensionality, Admissibility, and (non-strict) Mild Immodesty.

The remaining postulates aim to pick out reasonable mildly
immodest scoring rules.
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truth-directedness

Truth-Directedness Let b, c ∈ B be any two beliefs. If
|p− ω| < |q− ω| for all precise credences p ∈ b and
q ∈ c, then I(b, ω) < I(c, ω).

Truth directedness rules out vacuous rules like Lucky 7.

34



savage’s omelet law

Adding a bad egg to the pan cannot improve the omelet.

Example:

If Hans believes that Miami is south of Munich to degree .99 and
Klaus believes it only to degree .9, Hans cannot be more accurate
weakening his belief from .99 to [.9, .99].
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savage’s omelet law

Adding a bad egg to the pan cannot improve the omelet.

SOL Let b, c ∈ B be any two beliefs such that b ⊆ c and
|q− ω| > |p− ω| for all q ∈ c \ b and p ∈ b. Then
I(b, ω) < I(c, ω).
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monotonicity

Adding accurate credences cannot make a belief state less accurate.

If Hans’s belief that Miami is south of Munich are represented by
[.9, .99], then his belief cannot be made less accurate by weakening
to [.9, 1].
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monotonicity

Adding accurate credences cannot make a belief state less accurate.

Monotonicity Let b, c ∈ B be any two beliefs such that b ⊆ c and
|q− ω| ≤ |p− ω| for all q ∈ c \ b and p ∈ b. Then
I(b, ω) ≥ I(c, ω).
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dominance

Let b, c, and d be three (not necessarily distinct) belief states, and
suppose that d is at least as accurate as c whatever the truth.

Admissibility If your belief state is b and the set of rational belief
states Rb from your perspective contains c, then it also
contains d.

Dominance If d is strictly less accurate than c whatever the truth,
then d is not a rational belief state.

Regardless of one’s belief state b, the set of rational
beliefs Rb does not contain d.
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theorem

Theorem ((Mayo-Wilson and Wheeler 2015))

Dominance, Imprecision, Quantifiability, Extensionality, Mild
Immodesty, Continuity, Truth-Directedness, SOL, and Monotonicity

entail there is a function f : B→ [0, 1] such that, for any belief b:

· f(p) ∈ [b−,b+], and
· I(b, ω) = I(f(p), ω) for all ω7

7For a single proposition
40
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theorem

Any mildly immodest method of measuring inaccuracy of an
imprecise belief b must reduce to measuring the inaccuracy of
exactly one precise credence.
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converse?

We would like to say that any measure of inaccuracy IA8, together
with

· the definition of Rb, and
· having the functional form I(b, ω) = I(f(p), ω) for all ω, then:

IA satisfies Dominance, Imprecision, Quantifiability, Extensionality,
Mild Immodesty, Continuity, Truth-Directedness, SOL, and
Monotonicity

8Again, for a single proposition
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partial converse

Suppose IA satisfies Extensionality, Continuity, and
Truth-Directedness, and

for all b, c ∈ B

1. f(b) ∈ [b−,b+],
2. If p < q for all p ∈ b and q ∈ c, then f(b) < f(c),
3. If b ⊆ c and p < q for all p ∈ b and q ∈ c \ b, then f(b) ≤ f(c), and
4. If b ⊆ c and q < p for all p ∈ b and q ∈ c \ b, then f(c) ≤ f(b).

then IA satisfies Dominance, Imprecision, Quantifiability, Mild
Immodesty, SOL, and Monotonicity.
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discussion

How to use this measure to score an imprecise belief state?

Mid-point scoring Measure inaccuracy of b by scoring its midpoint
There are a wide range of ways to satisfy the axioms.
Midpoint scoring is one way to formalize “average”
inaccuracy of an interval-valued belief state.
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discusion

Limitations to mid-point scoring

· The midpoint of 12 and [0, 1] are the same.
· Useless for elicitation

Recall that the original motivation for studying strictly proper
scoring rules was for elicitation. But if 12 scores the same as [0, 1],
then a rational agent has no accuracy-related incentive to report
one credal state over the other.

45



discussion

Joyce His arguments for IP, like most IP theorists, do not
appeal to accuracy.
Instead, imprecision is thought to reflect the quality of
evidence.
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ip and accuracy

Arguments for imprecision should not appeal to accuracy.

Example: Alice is a US history scholar and knows that Lincoln
wore a stovetop hat.
Bill thinks every 19th Century US President wore a
stovetop hat.

Alice and Bill are just as accurate about Lincoln.
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ip and accuracy

Moral If imprecision is determined by strength of evidence,
then precision and accuracy may come apart.

There may be many belief states of different precision
that are equally accurate.
If so, then considerations of accuracy will generally fail
to narrow the set of rational beliefs to a single state as
Strict Immodesty requires.
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3 Ideas
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3 ideas

Interpretation: Interpretation of probability is entangled with use.

Temperament: An understandable desire for objectivity.

Mildly Proper IP Scoring Rules: How to manage the math and
meaning of such a thing.
To reconcile ‘accuracy’ and ‘ imprecision’, two options
1. Drop Quantifiability [Joyce, Seidenfeld / SSK]
2. Replace Strict Immodesty by Mild Immodesty [us]

Dropping strict immodesty can be motivated by
evidential considerations, like imprecision.
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